A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with...A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.展开更多
A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral eleme...A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral element hybrid method(FE-SEHM)is developed to obtain the dynamic stiffness matrix of the sandwich metamaterial plate.The frequency response curves of the plate structure under the harmonic excitation are calculated using the presented numerical method and validated by the vibration experiment.By comparing with the frequency response curves of sandwich metamaterial plate with pure elastic rod core,improved band-gap properties are achieved from the designed metamaterial plate with composite periodic rod core.The elastic metamaterial plate with composite periodic rod core can generate more band-gaps,so it can suppress the vibration and elastic wave propagation in the structure more effectively.展开更多
基金supported by the Chinese Academy of Science Strategic Priority Research Program (Grant No. XDA05110303)"973" Program (Grant Nos. 2010CB950403,2012CB417203,and 2013CB955803)+1 种基金"863" Program(Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant Nos. 40925015,40875034,and 41023002)
文摘A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
基金the National Natural Science Foundation of China(No.11761131006)the Research Team Project of Heilongjiang Natural Science Foundation under Grant No.TD2020A001.
文摘A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral element hybrid method(FE-SEHM)is developed to obtain the dynamic stiffness matrix of the sandwich metamaterial plate.The frequency response curves of the plate structure under the harmonic excitation are calculated using the presented numerical method and validated by the vibration experiment.By comparing with the frequency response curves of sandwich metamaterial plate with pure elastic rod core,improved band-gap properties are achieved from the designed metamaterial plate with composite periodic rod core.The elastic metamaterial plate with composite periodic rod core can generate more band-gaps,so it can suppress the vibration and elastic wave propagation in the structure more effectively.