Ablation resistance of monolithic LaB-doped ZrC coating for SiC-coated carbon/carbon composites by supersonic atmospheric plasma spray was investigated under an oxyacetylene torch with a heat flux of 4.18 MW/m~2. Resu...Ablation resistance of monolithic LaB-doped ZrC coating for SiC-coated carbon/carbon composites by supersonic atmospheric plasma spray was investigated under an oxyacetylene torch with a heat flux of 4.18 MW/m~2. Result shows that ZrC coating with 10 vol.% LaBhas a good ablation resistance compared with pure ZrC, ZrC with 20 vol.% LaBand SiC-doped ZrC coating. After ablation for 15 s, the weight is increased by 1.12 mg/s. The good ablation resistance is ascribed to the formation of a stabilized scale which consists of protective LaZrO-containing molten phase and ZrOparticles keeping the integrity of the coating.展开更多
C/C–SiC–HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of ...C/C–SiC–HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of the composites were analyzed by scanning electron microscopy and X-ray diffraction. The ablation resistance of the composites was evaluated under 3,000 °C oxyacetylene torch. After ablation for 120 s, the composites exhibit good ablation properties with the linear and mass ablation rates of 9.1 9 10-4mm/s and 1.30 9 10-3g/s, which are far lower than those of the C/C–SiC composites. The excellent ablative property of the C/C–SiC–HfC composites is resulted from the formation of HfO2 molten layer on the surface of the composites, which could play a positive role in reducing heat transfer and preventing oxygen transport to the underlying carbon substrate.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51521061,51502245,51472203)the "111" Project (Grant no. B08040)the Research Fund of State Key Laboratory of Solidification Processing (NWPU),China (Grant No.142-TZ-2016)
文摘Ablation resistance of monolithic LaB-doped ZrC coating for SiC-coated carbon/carbon composites by supersonic atmospheric plasma spray was investigated under an oxyacetylene torch with a heat flux of 4.18 MW/m~2. Result shows that ZrC coating with 10 vol.% LaBhas a good ablation resistance compared with pure ZrC, ZrC with 20 vol.% LaBand SiC-doped ZrC coating. After ablation for 15 s, the weight is increased by 1.12 mg/s. The good ablation resistance is ascribed to the formation of a stabilized scale which consists of protective LaZrO-containing molten phase and ZrOparticles keeping the integrity of the coating.
基金financially supported by the National Natural Science Foundation of China(Nos.51221001 and 51272213)the Author of National Excellent Doctoral Dissertation of China(No.201036),the ‘‘111’’ project of China (No.B08040)National Basic Research program of China (No.2011CB605806)
文摘C/C–SiC–HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of the composites were analyzed by scanning electron microscopy and X-ray diffraction. The ablation resistance of the composites was evaluated under 3,000 °C oxyacetylene torch. After ablation for 120 s, the composites exhibit good ablation properties with the linear and mass ablation rates of 9.1 9 10-4mm/s and 1.30 9 10-3g/s, which are far lower than those of the C/C–SiC composites. The excellent ablative property of the C/C–SiC–HfC composites is resulted from the formation of HfO2 molten layer on the surface of the composites, which could play a positive role in reducing heat transfer and preventing oxygen transport to the underlying carbon substrate.