期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Monolithic LaB_6 on the Ablation Resistance of ZrC/SiC Coating Prepared by Supersonic Plasma Spraying for C/C Composites 被引量:2
1
作者 Yujun Jia Hejun Li +2 位作者 Lu Li Qiangang Fu Kezhi Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期996-1002,共7页
Ablation resistance of monolithic LaB-doped ZrC coating for SiC-coated carbon/carbon composites by supersonic atmospheric plasma spray was investigated under an oxyacetylene torch with a heat flux of 4.18 MW/m~2. Resu... Ablation resistance of monolithic LaB-doped ZrC coating for SiC-coated carbon/carbon composites by supersonic atmospheric plasma spray was investigated under an oxyacetylene torch with a heat flux of 4.18 MW/m~2. Result shows that ZrC coating with 10 vol.% LaBhas a good ablation resistance compared with pure ZrC, ZrC with 20 vol.% LaBand SiC-doped ZrC coating. After ablation for 15 s, the weight is increased by 1.12 mg/s. The good ablation resistance is ascribed to the formation of a stabilized scale which consists of protective LaZrO-containing molten phase and ZrOparticles keeping the integrity of the coating. 展开更多
关键词 Ceramic coating C/C composites ablation performance
原文传递
Ablative Property of C/C–SiC–HfC Composites Prepared via Precursor Infiltration and Pyrolysis under 3,000 °C Oxyacetylene Torch 被引量:4
2
作者 Min Yan Hejun Li +3 位作者 Qiangang Fu Jing Xie Lei Liu Bo Feng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期981-987,共7页
C/C–SiC–HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of ... C/C–SiC–HfC composites were fabricated via precursor infiltration and pyrolysis using a mixture solution of organic hafnium-containing polymer and polycarbosilane as precursor. The microstructures and the phases of the composites were analyzed by scanning electron microscopy and X-ray diffraction. The ablation resistance of the composites was evaluated under 3,000 °C oxyacetylene torch. After ablation for 120 s, the composites exhibit good ablation properties with the linear and mass ablation rates of 9.1 9 10-4mm/s and 1.30 9 10-3g/s, which are far lower than those of the C/C–SiC composites. The excellent ablative property of the C/C–SiC–HfC composites is resulted from the formation of HfO2 molten layer on the surface of the composites, which could play a positive role in reducing heat transfer and preventing oxygen transport to the underlying carbon substrate. 展开更多
关键词 C/C–SiC–HfC composite ablation performance Thermal behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部