The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor ...The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.展开更多
The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method,...The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method, respectively. The microstructure and properties of the sheet were investigated by AFM, SEM and EDS. The results show that the TiAl based alloys sheet has a good surface quality, and its microstructure is columnar crystal. The component of the alloys indicates a regular and periodical gradient change which leads to the spontaneous delamination along the normal direction of substrate. In the TiAl/Nb laminated composites alternating overlaid by TiAl of 24 layers and Nb of 23 layers, the interface of each layer evenly distributed throughout the cross-section is transparent, and the interlayer spacing is about 8μm. The component of TiAl layers also changes regularly along the normal direction of substrate, but no delamination phenomenon is found. The TiAl/Nb laminated composites have better ductility than the TiAl-based alloys sheet.展开更多
基金National Natural Science Foundation of China (90405016)
文摘The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.
基金Projects(90205034, 90405016) supported by the National Natural Science Foundation of China
文摘The TiAl-based alloys sheet with 150 mm×100 mm×0.4 mm and the TiAl/Nb laminated composites with 150 mm×100 mm×0.2 mm were fabricated by using electron beam-physical vapor deposition(EB-PVD) method, respectively. The microstructure and properties of the sheet were investigated by AFM, SEM and EDS. The results show that the TiAl based alloys sheet has a good surface quality, and its microstructure is columnar crystal. The component of the alloys indicates a regular and periodical gradient change which leads to the spontaneous delamination along the normal direction of substrate. In the TiAl/Nb laminated composites alternating overlaid by TiAl of 24 layers and Nb of 23 layers, the interface of each layer evenly distributed throughout the cross-section is transparent, and the interlayer spacing is about 8μm. The component of TiAl layers also changes regularly along the normal direction of substrate, but no delamination phenomenon is found. The TiAl/Nb laminated composites have better ductility than the TiAl-based alloys sheet.