期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Control of Fracture Behavior of Carbon Fiber/Pitch-based CarbonMatrix Composites with Microspace Modification Concept
1
作者 Shiushichi Kimura(Institute of Inorganic Synthesis, Faculty of Engineering, Yamanashi University, 7 Miyamae, Kofu, Yamanashi 400, JapanKouichi Yasuda and Yohtaro Mitsuo) To whom correspondence should be addressedE-mail: kyasuda@o.cc.titech.ac.jp(Departmen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第5期393-399,共7页
Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix... Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix interface apparently decreased with decreasing a pore diameter,and consequently a new idea of microspace modification concept was proposed for controllingfracture behavior of C/C composites. Four types of C/C composites with various pore structureswere fabricated by hot-pressing, and their fracture behavior was investigated by three pointbending tests. The fracture behavior of the C/C composites was changed from brittle one topseudo ductile one with decreasing the pore diameter. This result supported the validity of themicrospace modification concept proposed in this paper. 展开更多
关键词 Control of Fracture Behavior of Carbon Fiber/Pitch-based CarbonMatrix composites with Microspace Modification concept
下载PDF
Analysis of a New Composite Material for Watercraft Manufacturing 被引量:1
2
作者 Alexandre Wahrhaftig Henrique Ribeiro +1 位作者 Ademar Nascimento Milton Filho 《Journal of Marine Science and Application》 CSCD 2016年第3期336-342,共7页
In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does ... In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell. 展开更多
关键词 naval construction computational analysis composite material sandwich-structure expanded polystyrene FIBERGLASS composite structure concepts finite element method economic viability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部