Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer...Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer is perforated with a series of small holes, and the ratio of the perforation area to the total damping area is the design variable of the methodology. The multi-objective optimization is converted into a single-objective problem by an evaluation function which is a liner weigh sum of the two sub-objective functions. The proposed methodology was carried out to determine the optimal perforation area ratios of two viscoelstic layers with different perforation distance embedded in two composite plates. Both the optimal perforation area ratios are approximate to 2.2%. However, the objective value of the plate with greater perforation distance in embedded viscoelatic layer is much greater.展开更多
A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta...A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions.展开更多
This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engin...This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent.展开更多
A genetic algorithm based multi-objective coordinative optimization strategy is developed to optimize the operation of a binary feed atmospheric and vacuum distillation system, in which the objective functions cover t...A genetic algorithm based multi-objective coordinative optimization strategy is developed to optimize the operation of a binary feed atmospheric and vacuum distillation system, in which the objective functions cover the economic benefit, the furnace energy consumption and the CO_2 emissions, and meanwhile the simultaneous effect of binary feed composition is also investigated. A cross-call integration of software is developed to implement the optimization algorithm,and once the maximum economic benefit, the minimum furnace energy consumption and the minimum CO_2 emissions are obtained, the Pareto-optimal solution set is worked out, with the practical problems of the refinery being solved. The optimization result shows that under the same furnace energy consumption and the CO_2 emissions as the existing working condition, the economic benefit still allows for a considerable potential of increment by adjusting the heavy oil proportion of the binary feed crude oil.展开更多
The surface–volume–surface electric field integral equation(SVS-EFIE)can lead to complex equations,laborious implementation,and unacceptable computational complexity in the method of moments(MoM).Therefore,a general...The surface–volume–surface electric field integral equation(SVS-EFIE)can lead to complex equations,laborious implementation,and unacceptable computational complexity in the method of moments(MoM).Therefore,a general matrix equation(GME)is proposed for electromagnetic scattering from arbitrary metal–dielectric composite objects,and its enhanced solution is presented in this paper.In previous works,MoM solution formulation of SVSEFIE considering only three-region metal–dielectric composite scatters was presented,and the two-stage process resulted in two integral operators in SVS-EFIE,which is arduous to implement and is incapable of reducing computational complexity.To address these difficulties,GME,which is versatile for homogeneous objects and composite objects consisting of more than three sub-regions,is proposed for the first time.Accelerated solving policies are proposed for GME based on coupling degree concerning the spacing between sub-regions,and the coupling degree standard can be adaptively set to balance the accuracy and efficiency.In this paper,the reformed addition theorem is applied for the strong coupling case,and the iterative method is presented for the weak coupling case.Parallelism can be easily applied in the enhanced solution.Numerical results demonstrate that the proposed method requires only 11.6%memory and 11.8%CPU time on average compared to the previous direct solution.展开更多
An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writ...An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writing programs to be executed on MIMD computers with distributed memory. Difference methods on composite, structured grids are supported. Most of the Cogito classes have been implemented in Fortran 77, in such a way that the object-oriented design is visible. With respect to parallel performance, these tools yield code that is comparable to parallel solvers written in plain Fortran 77. The resulting programs are can be executed without modification on a large number of multicomputer platforms, and also on serial computers. The uppermost level of abstraction in Cogito concerns the problem of decoupling the numerical method from the PDE problem. The validity of these tools has been preliminarily demonstrated with a C++ implementation for one-dimensional problems.展开更多
文摘Presented herein is a methodology for the multi-objective optimization of damping and bending stiffness of cocoured composite laminates with embedded viscoelastic damping layer. The embedded viscoelastic damping layer is perforated with a series of small holes, and the ratio of the perforation area to the total damping area is the design variable of the methodology. The multi-objective optimization is converted into a single-objective problem by an evaluation function which is a liner weigh sum of the two sub-objective functions. The proposed methodology was carried out to determine the optimal perforation area ratios of two viscoelstic layers with different perforation distance embedded in two composite plates. Both the optimal perforation area ratios are approximate to 2.2%. However, the objective value of the plate with greater perforation distance in embedded viscoelatic layer is much greater.
基金supported by the National Natural Science Foundation of China(Grant 11572134)
文摘A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multiobjective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid’s area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Paretooptimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effec tively deal with multi-objective optimizations with black-box functions.
文摘This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent.
基金supported financially by the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (Grant No. BS2014NJ010)the National Natural Science Foundation of China (Grant No. 21506255)
文摘A genetic algorithm based multi-objective coordinative optimization strategy is developed to optimize the operation of a binary feed atmospheric and vacuum distillation system, in which the objective functions cover the economic benefit, the furnace energy consumption and the CO_2 emissions, and meanwhile the simultaneous effect of binary feed composition is also investigated. A cross-call integration of software is developed to implement the optimization algorithm,and once the maximum economic benefit, the minimum furnace energy consumption and the minimum CO_2 emissions are obtained, the Pareto-optimal solution set is worked out, with the practical problems of the refinery being solved. The optimization result shows that under the same furnace energy consumption and the CO_2 emissions as the existing working condition, the economic benefit still allows for a considerable potential of increment by adjusting the heavy oil proportion of the binary feed crude oil.
基金Project supported by the National Key Research and Development Program,China(No.2020YFC2201302)。
文摘The surface–volume–surface electric field integral equation(SVS-EFIE)can lead to complex equations,laborious implementation,and unacceptable computational complexity in the method of moments(MoM).Therefore,a general matrix equation(GME)is proposed for electromagnetic scattering from arbitrary metal–dielectric composite objects,and its enhanced solution is presented in this paper.In previous works,MoM solution formulation of SVSEFIE considering only three-region metal–dielectric composite scatters was presented,and the two-stage process resulted in two integral operators in SVS-EFIE,which is arduous to implement and is incapable of reducing computational complexity.To address these difficulties,GME,which is versatile for homogeneous objects and composite objects consisting of more than three sub-regions,is proposed for the first time.Accelerated solving policies are proposed for GME based on coupling degree concerning the spacing between sub-regions,and the coupling degree standard can be adaptively set to balance the accuracy and efficiency.In this paper,the reformed addition theorem is applied for the strong coupling case,and the iterative method is presented for the weak coupling case.Parallelism can be easily applied in the enhanced solution.Numerical results demonstrate that the proposed method requires only 11.6%memory and 11.8%CPU time on average compared to the previous direct solution.
文摘An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writing programs to be executed on MIMD computers with distributed memory. Difference methods on composite, structured grids are supported. Most of the Cogito classes have been implemented in Fortran 77, in such a way that the object-oriented design is visible. With respect to parallel performance, these tools yield code that is comparable to parallel solvers written in plain Fortran 77. The resulting programs are can be executed without modification on a large number of multicomputer platforms, and also on serial computers. The uppermost level of abstraction in Cogito concerns the problem of decoupling the numerical method from the PDE problem. The validity of these tools has been preliminarily demonstrated with a C++ implementation for one-dimensional problems.