In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p...In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.展开更多
Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bra...Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines.展开更多
For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the ...For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the deformation and failure characteristics of lining structures under internal water pressure are not well investigated in the literature,particularly for three-layer composite linings.This study presents an in situ experimental investigation on the response of two types of composite linings(i.e.separated and combined lining structures)subjected to internal pressures,in which a fiber optic nerve system(FONS)equipped with distributed strain and displacement sensing nerves was employed to monitor the performance of the two composite linings during testing.The experimental results clearly show that the damage of the tunnel lining under different internal pressures was mainly located in the self-compaction concrete layer.The separated lining structure responded more aggressively to the variations in internal pressures than the combined one.Moreover,two evaluation indices,i.e.radial displacement and effective stiffness coefficient,are proposed for describing the changes in the structural bearing performance.The effective stiffness coefficients of the two types of lining structures were reduced by 39.4%and 29.5%,respectively.Considering the convenience of field monitoring,it is suggested that the average strains at different layers can be used as characteristic parameters for estimating the health conditions of lining structures in service.The analysis results provide a practical reference for the design and health evaluation of water conveyance shield tunnels with composite linings.展开更多
A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically...A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.展开更多
Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite li...Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite lining are not yet clear.In this research,the force variation of composite lining under three cases in model tests of deep-buried tunnels were carried out with the surrounding rock grade and installation time as the variation factors.The test results reveal that:(1)The suitable method to reduce the contact load between the secondary lining and primary support is to enhance the primary support in the soft and weak surrounding rock.Correspondingly,for ClassⅢsurrounding rock and better quality of surrounding rock,the primary support can lag behind the excavation face a certain distance.(2)The axial forces of the bolts tend to rise with concentration of 0.4 kN-0.7 kN after the secondary lining was installed.(3)With or without two to three excavation cycles delayed,the load sharing ratio of the secondary lining of the Class III surrounding rock is less than 10%.Finally,the numerical simulation verifies the feasibility of the model tests.展开更多
A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The...A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The LH and RH frequency bands are then identified by the real parts of the Bloch impedance and the phase delay of the unit cells. The new approach has some advantages over the LC parameters extraction method introduced by Caloz et a1.(2004). Based on the new approach, a novel resonator is designed using CRLH TLs. The simulation and experimental results accorded well with the theoretical analysis. The novel resonator may have potential applications in filters with high harmonic suppression and compact structures,展开更多
To reduce the burning loss and the spalling and to improve energy efficiency,the mullite composite lining plates were used to replace cast steel or alloy lining in rotary coke tanks for coke dry quenching equipment.Th...To reduce the burning loss and the spalling and to improve energy efficiency,the mullite composite lining plates were used to replace cast steel or alloy lining in rotary coke tanks for coke dry quenching equipment.The results show that:the dense mullite composite lining plate in the cone part has the density of 2.20 g·cm^(-3) and the wear test,s volume loss of 4.08 cm^(3),and the light weight mullite composite lining plate in the straight cylinder part has the density of 1.95 g·cm^(-3) and the wear test,s volume loss of 17.6 cm^(3).After using,there is no shrinkage gap,no burn loss or holes in the plates,indicating good sealing of the mullite composite lining plates.The lining plate for the cone part has low burning loss,without spalling for more than half a year.The outer surface temperature of coke tanks adopting the cast steel or the alloy lining is 480 to 570℃,while that of the ones adopting mullite composite lining plates is 120 to 170℃,showing a largely improved insulating property.Adopting mullite composite lining plates on the basis of the current coke tank cage,the lining plates can be timely treated and wholly replaced,improving the service life and reducing the maintenance workload.展开更多
A dual structure of composite right/left handed (CRLH) transmission line (TL) is analyzed in which an inductance LR is in parallel with a capacitance CL and a shunt capacitance CR is in series with an inductance LL. B...A dual structure of composite right/left handed (CRLH) transmission line (TL) is analyzed in which an inductance LR is in parallel with a capacitance CL and a shunt capacitance CR is in series with an inductance LL. Both the distributed and lumped cases are considered. The dispersion diagram and transmission properties of the dual CRLH TL are given and compared with those of a standard CRLH TL. Contrary to the frequency response of a standard CRLH TL, a dual CRLH TL has a left-handed (negative phase shift) band at higher frequencies and a right-handed (positive phase shift) band at lower frequencies. A novel dual-band balun is presented as an application.展开更多
The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in...The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.展开更多
Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure...Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load.展开更多
The refraction index of the quantized lossy composite right-left handed transmission line(CRLH-TL) is deduced in the thermal coherence state. The results show that the negative refraction index(herein the left-hand...The refraction index of the quantized lossy composite right-left handed transmission line(CRLH-TL) is deduced in the thermal coherence state. The results show that the negative refraction index(herein the left-handedness) can be implemented by the electric circuit dissipative factors(i.e., the resistances R and conductances G) in a higher frequency band(1.446 GHz≤ ω ≤ 15 GHz), and flexibly adjusted by the left-handed circuit components(Cl, Ll) and the right-handed circuit components(Cr, Lr) at a lower frequency(ω = 0.995 GHz). The flexible adjustment for left-handedness in a wider bandwidth will be significant for the microscale circuit design of the CRLH-TL and may make the theoretical preparation for its compact applications.展开更多
With the rapid development of the automobile industry, the use of galvannealed and galvanized steel sheets in automobiles is on the rise. These sheets must meet very high surface quality requirements. The surface trea...With the rapid development of the automobile industry, the use of galvannealed and galvanized steel sheets in automobiles is on the rise. These sheets must meet very high surface quality requirements. The surface treatment of line rolls is known to have a great impact on strip quality. To prevent dusts such as zinc ash from pressing into the strip surface, we used a composite thermal spray surface treatment technique to treat rolls. The successfully developed tungsten carbide (WC) + Ni-P composite plating technology improved the quality of the tungsten carbide thermally sprayed WC roll surface. This technique is also helpful to control defects such as adhered foreign materials in hot-dip galvanized automobile outer panel surfaces.展开更多
Hybrid materials collected from organic and inorganic sources,which are traditionally used as brake lining materials,generally include fly ash,cashew shell powder,phenolic resins,aluminium wool,barites,lime powder,car...Hybrid materials collected from organic and inorganic sources,which are traditionally used as brake lining materials,generally include fly ash,cashew shell powder,phenolic resins,aluminium wool,barites,lime powder,carbon powder and copper powder.The present research focuses on the specific effects produced by fly ash and aims to provide useful indications for the replacement of asbestos due to the health hazards caused by the related fibers.Furthermore,the financial implications related to the use of large-volume use of fly ash,lime stone and cashew shell powder,readily available in most countries in the world,are also discussed.It is shown that many manufacturing and automotive industries,which are currently experiencing difficulties in meeting the increasing demand for brake lining material,may take advantage from the proposed solution.展开更多
In this paper, a new miniaturized wide-pass-band filter at U band based on composite right/left- handed transmission line (CRLH TL) is implemented. The CRLH TL contributed to a broadband filter is a balanced structure...In this paper, a new miniaturized wide-pass-band filter at U band based on composite right/left- handed transmission line (CRLH TL) is implemented. The CRLH TL contributed to a broadband filter is a balanced structure with a small size of only 1.428 mm*0.5530 mm. The frequency characteristics are simulated and the results show that the 3 dB band width of the proposed filter is about 13.5 GHz from 45.8 GHz to 59.3 GHz. The insertion loss is quite flat through the pass-band and the return loss is relatively low.展开更多
Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the ...Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.展开更多
Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite struc...Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.展开更多
In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable funct...In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.展开更多
In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were...In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.展开更多
The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion,...The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion, i.e. a ratio criterion of strain energy release rate, is proposed to determine the growing direction of a fatigue crack in the composite laminates. The method of arbitrary lines, which is very effective to solve the problems with high gradient feature, is used to analyze the experimental results at the key moments when a crack kinks, turns into the interface, or bifurcates. An approximate method of computing the energy release rate is given. The fatigue fracture tests of composite laminates are carried out, and the numerical predictions of crack growing directions agree well with the experimental results. It is concluded that the methods suggested in this paper are effective to obtain the cracking history and the growing path of a fatigue crack in composite laminates.展开更多
基金The Special Project of the Ministry of Construction ofChina (No.20060909).
文摘In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.
基金supported by National High-tech Research and Development Program of China (863 Program) (2013AA030701)Science and Technology Project of the State Grid Xinjiang Electric Power Corporation (5230DK15009L)
文摘Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42225702 and 42077235)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX22_0162)the scientific research project of Guangdong Yue Hai Pearl River Delta Water Supply Co.,Ltd.The authors thank Guangqing Wei,Lixiang Jia,and Zhen Zhang,all of Suzhou Nanzee Sensing Co.,Ltd.,for their assistance in the tests.The valuable suggestions provided by Professor Baojun Wang,Nanjing University,are also gratefully acknowledged.
文摘For long-distance water conveyance shield tunnels in operation,the high internal water pressure may cause excessive deformation of composite linings,affecting their structural integrity and serviceability.However,the deformation and failure characteristics of lining structures under internal water pressure are not well investigated in the literature,particularly for three-layer composite linings.This study presents an in situ experimental investigation on the response of two types of composite linings(i.e.separated and combined lining structures)subjected to internal pressures,in which a fiber optic nerve system(FONS)equipped with distributed strain and displacement sensing nerves was employed to monitor the performance of the two composite linings during testing.The experimental results clearly show that the damage of the tunnel lining under different internal pressures was mainly located in the self-compaction concrete layer.The separated lining structure responded more aggressively to the variations in internal pressures than the combined one.Moreover,two evaluation indices,i.e.radial displacement and effective stiffness coefficient,are proposed for describing the changes in the structural bearing performance.The effective stiffness coefficients of the two types of lining structures were reduced by 39.4%and 29.5%,respectively.Considering the convenience of field monitoring,it is suggested that the average strains at different layers can be used as characteristic parameters for estimating the health conditions of lining structures in service.The analysis results provide a practical reference for the design and health evaluation of water conveyance shield tunnels with composite linings.
基金Project supported by the National Natural Science Foundation of China (Nos. 60577023 and 60378037), the National Basic Research Program (973) of China (No. 2004CB719802), China Postdoctoral Science Foundation, and Education Ministry Key Laboratory of Photoelectric Information Technology Science Foundation (No. 2005-20), China
文摘A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.
基金the Scientific Research Project of Zhejiang Provincial Transportation Department(2021050)for the preparation of this manuscript。
文摘Currently,model tests are increasingly being used to simulate the construction of mountain tunnels,but the support structure of the model tests does not show the composite lining,and the force laws of the composite lining are not yet clear.In this research,the force variation of composite lining under three cases in model tests of deep-buried tunnels were carried out with the surrounding rock grade and installation time as the variation factors.The test results reveal that:(1)The suitable method to reduce the contact load between the secondary lining and primary support is to enhance the primary support in the soft and weak surrounding rock.Correspondingly,for ClassⅢsurrounding rock and better quality of surrounding rock,the primary support can lag behind the excavation face a certain distance.(2)The axial forces of the bolts tend to rise with concentration of 0.4 kN-0.7 kN after the secondary lining was installed.(3)With or without two to three excavation cycles delayed,the load sharing ratio of the secondary lining of the Class III surrounding rock is less than 10%.Finally,the numerical simulation verifies the feasibility of the model tests.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719800) and the National Natural Science Foundation of China (Nos. 60271027 and 60501018)
文摘A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The LH and RH frequency bands are then identified by the real parts of the Bloch impedance and the phase delay of the unit cells. The new approach has some advantages over the LC parameters extraction method introduced by Caloz et a1.(2004). Based on the new approach, a novel resonator is designed using CRLH TLs. The simulation and experimental results accorded well with the theoretical analysis. The novel resonator may have potential applications in filters with high harmonic suppression and compact structures,
文摘To reduce the burning loss and the spalling and to improve energy efficiency,the mullite composite lining plates were used to replace cast steel or alloy lining in rotary coke tanks for coke dry quenching equipment.The results show that:the dense mullite composite lining plate in the cone part has the density of 2.20 g·cm^(-3) and the wear test,s volume loss of 4.08 cm^(3),and the light weight mullite composite lining plate in the straight cylinder part has the density of 1.95 g·cm^(-3) and the wear test,s volume loss of 17.6 cm^(3).After using,there is no shrinkage gap,no burn loss or holes in the plates,indicating good sealing of the mullite composite lining plates.The lining plate for the cone part has low burning loss,without spalling for more than half a year.The outer surface temperature of coke tanks adopting the cast steel or the alloy lining is 480 to 570℃,while that of the ones adopting mullite composite lining plates is 120 to 170℃,showing a largely improved insulating property.Adopting mullite composite lining plates on the basis of the current coke tank cage,the lining plates can be timely treated and wholly replaced,improving the service life and reducing the maintenance workload.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719802), and the Science and Technology De-partment of Zhejiang Province (No. 2005C31004), China
文摘A dual structure of composite right/left handed (CRLH) transmission line (TL) is analyzed in which an inductance LR is in parallel with a capacitance CL and a shunt capacitance CR is in series with an inductance LL. Both the distributed and lumped cases are considered. The dispersion diagram and transmission properties of the dual CRLH TL are given and compared with those of a standard CRLH TL. Contrary to the frequency response of a standard CRLH TL, a dual CRLH TL has a left-handed (negative phase shift) band at higher frequencies and a right-handed (positive phase shift) band at lower frequencies. A novel dual-band balun is presented as an application.
文摘The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.
文摘Effect of annealing on "fly-line"(adiabatic sheer line) microstructure and properties of explosively composited stainless steel-stainless steel plates was studied.Results show that the flyline microstructure will diminish through certain annealing process,while the cracks formed from fly-line microstructure will remain.Therefore,fly-line microstructure can be considered as a plastic deformation microstructure and crack source s meanwhile its formation is considered as a special plastic deformation mechanism of metal under explosive load.
基金supported by the National Natural Science Foundation of China(Grant Nos.61205205 and 6156508508)the General Program of Yunnan Provincial Applied Basic Research Project,China(Grant No.2016FB009)the Foundation for Personnel Training Projects of Yunnan Province,China(Grant No.KKSY201207068)
文摘The refraction index of the quantized lossy composite right-left handed transmission line(CRLH-TL) is deduced in the thermal coherence state. The results show that the negative refraction index(herein the left-handedness) can be implemented by the electric circuit dissipative factors(i.e., the resistances R and conductances G) in a higher frequency band(1.446 GHz≤ ω ≤ 15 GHz), and flexibly adjusted by the left-handed circuit components(Cl, Ll) and the right-handed circuit components(Cr, Lr) at a lower frequency(ω = 0.995 GHz). The flexible adjustment for left-handedness in a wider bandwidth will be significant for the microscale circuit design of the CRLH-TL and may make the theoretical preparation for its compact applications.
文摘With the rapid development of the automobile industry, the use of galvannealed and galvanized steel sheets in automobiles is on the rise. These sheets must meet very high surface quality requirements. The surface treatment of line rolls is known to have a great impact on strip quality. To prevent dusts such as zinc ash from pressing into the strip surface, we used a composite thermal spray surface treatment technique to treat rolls. The successfully developed tungsten carbide (WC) + Ni-P composite plating technology improved the quality of the tungsten carbide thermally sprayed WC roll surface. This technique is also helpful to control defects such as adhered foreign materials in hot-dip galvanized automobile outer panel surfaces.
文摘Hybrid materials collected from organic and inorganic sources,which are traditionally used as brake lining materials,generally include fly ash,cashew shell powder,phenolic resins,aluminium wool,barites,lime powder,carbon powder and copper powder.The present research focuses on the specific effects produced by fly ash and aims to provide useful indications for the replacement of asbestos due to the health hazards caused by the related fibers.Furthermore,the financial implications related to the use of large-volume use of fly ash,lime stone and cashew shell powder,readily available in most countries in the world,are also discussed.It is shown that many manufacturing and automotive industries,which are currently experiencing difficulties in meeting the increasing demand for brake lining material,may take advantage from the proposed solution.
文摘In this paper, a new miniaturized wide-pass-band filter at U band based on composite right/left- handed transmission line (CRLH TL) is implemented. The CRLH TL contributed to a broadband filter is a balanced structure with a small size of only 1.428 mm*0.5530 mm. The frequency characteristics are simulated and the results show that the 3 dB band width of the proposed filter is about 13.5 GHz from 45.8 GHz to 59.3 GHz. The insertion loss is quite flat through the pass-band and the return loss is relatively low.
基金Project(51378197)supported by the National Natural Science Foundation of China
文摘Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.
基金This work was supported by National Natural Science Foundation of China under Grant 11672266.
文摘Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
文摘In this paper, we present a nonmonotone algorithm for solving nonsmooth composite optimization problems. The objective function of these problems is composited by a nonsmooth convex function and a differentiable function. The method generates the search directions by solving quadratic programming successively, and makes use of the nonmonotone line search instead of the usual Armijo-type line search. Global convergence is proved under standard assumptions. Numerical results are given.
基金supported by the National Natural Science Foundation of China,No.51073072the Natural Science Foundation of Zhejiang Province in China,No.Y4100745+1 种基金the Key Laboratory Open Foundation of Advanced Textile Materials&Manufacturing Technology of Zhejiang Sci-Tech University from Ministry of Education of China,No.2009007the Science and Technology Commission of Jiaxing Municipality Program,No.2010AY1089
文摘In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.
文摘The interface plays the central role in the failure analysis of composite laminates, therefore, the interface material properties are taken as the independent parameters. A simple, universal and practicable criterion, i.e. a ratio criterion of strain energy release rate, is proposed to determine the growing direction of a fatigue crack in the composite laminates. The method of arbitrary lines, which is very effective to solve the problems with high gradient feature, is used to analyze the experimental results at the key moments when a crack kinks, turns into the interface, or bifurcates. An approximate method of computing the energy release rate is given. The fatigue fracture tests of composite laminates are carried out, and the numerical predictions of crack growing directions agree well with the experimental results. It is concluded that the methods suggested in this paper are effective to obtain the cracking history and the growing path of a fatigue crack in composite laminates.