As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered...As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.展开更多
A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitroge...A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9.展开更多
A novel mesoporous silica coated carbon composite(denoted SEG) with hierarchical pore structure has been successfully prepared in an aqueous solution that contains triblock copolymer template, aluminum chloride, silic...A novel mesoporous silica coated carbon composite(denoted SEG) with hierarchical pore structure has been successfully prepared in an aqueous solution that contains triblock copolymer template, aluminum chloride, siliceous source and expanded graphite. Textural property and morphology of the SEG composite were characterized by the combination of X-ray diffraction, N_2 adsorption–desorption, scanning electron microscopy,transmission electron microscopy and Fourier transform infrared measurements. Results show that mesoporous silica is steadily and uniformly grown on the surface of the graphite slices and the thickness of the silica layer can be finely tuned according to the silica/C molar ratio in the initial reaction solution. This newly synthesized SEG composite shows greatly increased adsorption capacity to methylene blue than the pristine expanded graphite in the batch tests. Both Langmuir and Frendlich models were further used to evaluate the adsorption isotherms of methylene blue over expanded graphite and SEG samples with different silica contents. Finally, pseudosecond-order model was used to describe the kinetics of methylene blue over expanded graphite and the silica-carbon composites.展开更多
In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface...In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs.展开更多
Purpose:The aim of the study was to examine the influence of the surgical approach for robot-assisted laparoscopic prostatectomy(RALP)on long-term urinary continence status in the era of self-reported functional statu...Purpose:The aim of the study was to examine the influence of the surgical approach for robot-assisted laparoscopic prostatectomy(RALP)on long-term urinary continence status in the era of self-reported functional status measures using the Expanded Prostate Cancer Index Composite 26.Materials and methods:This is a prospective evaluation of 232 patients undergoing RALP between September,2019 and September,2020.Urinary continence status and postoperative incontinence(pad usage)were evaluated 12 months after RALP using Expanded Prostate Cancer Index Composite 26 questionnaires.Patients were categorized according to their surgical approach and outcome into the following groups:successful nerve sparing(NS),primarily without nerve sparing(prim.NNS),and no nerve sparing by secondary resection(NNS by SR).The median levels of their questionnaire outcomes were evaluated and compared using the Wilcoxon rank sum test with continuity correction.Results:Urinary continence status 12 months after RALP differed significantly between the NS and prim.NNS(p=0.0071)and the NS and NNS by SR(p=0.0076)groups.There was no significant difference between the prim.NNS and NNS by SR(p=0.53)groups.Pad usage 12 months after RALP had no significant difference with regard to SR of the neurovascular bundle(p=0.14).Conclusions:Patient-reported outcomes of long-term urinary continence status seem to show no difference in postoperative continence,regardless of whether a non-nerve-sparing result was planned or reached through SR.Instead,preservation of neurovascular bundle seems to lead to better long-term continence rates.展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via va...In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials.展开更多
基金supported by an Early Career Faculty Grant from NASA’s Space Technology Research Grants Program (80NSSC18K1509)supported by the Institute for Electronics and Nanotechnology Seed Grant and performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (ECCS-2025462)
文摘As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.
基金Funded by the Science Foundation of Jiangsu Province (No. BK2009534)Foundation of Oil Gas Storage and Transport of Jiangsu Province (No.CY0901)
文摘A new method for preparing expanded graphite-based composites (EGCs) was developed.The obtained samples were characterized by scanning electron microscopy (SEM),transmission electron microscope (TEM) and nitrogen adsorption.The experimental results indicated that the EGCs was not simply mechanical mixture of EG and activated carbon,instead the activated carbon was coated on the surface of interior and external pores of the EG in the form of thin carbon layer.The thickness of the activated carbon layer was nearly one hundred nanometers by calculation.It was shown that the higher the impregnation ratio and the activation temperature were,the easier the porosity development would be.And the BET surface area and the total pore volume were as high as 1978 m2/g and 0.9917 cm3/g respectively at 350℃ with an impregnation ratio of 0.9.
基金Supported by the National Natural Science Foundation of China(2110311921407111 and 21277094)+7 种基金the Natural Science Foundation of Jiangsu Province(11KJB430012BK2012167 and BK20140280)the Scientific Research Foundation of the Chinese Ministry of Education([2013]693)the Excellent Innovation Team in Science and Technology of University in Jiangsuthe Province Collegiate Natural Science Fund of Jiangsu(14KJA43000412KJA430005)the Open Projects of the Jiangsu Key Laboratory for Environment Functional Materials(Nos.SJHG1310 and SJHG1304)the Science,Education and Health Foundation of Soochow(KJXW2013017)
文摘A novel mesoporous silica coated carbon composite(denoted SEG) with hierarchical pore structure has been successfully prepared in an aqueous solution that contains triblock copolymer template, aluminum chloride, siliceous source and expanded graphite. Textural property and morphology of the SEG composite were characterized by the combination of X-ray diffraction, N_2 adsorption–desorption, scanning electron microscopy,transmission electron microscopy and Fourier transform infrared measurements. Results show that mesoporous silica is steadily and uniformly grown on the surface of the graphite slices and the thickness of the silica layer can be finely tuned according to the silica/C molar ratio in the initial reaction solution. This newly synthesized SEG composite shows greatly increased adsorption capacity to methylene blue than the pristine expanded graphite in the batch tests. Both Langmuir and Frendlich models were further used to evaluate the adsorption isotherms of methylene blue over expanded graphite and SEG samples with different silica contents. Finally, pseudosecond-order model was used to describe the kinetics of methylene blue over expanded graphite and the silica-carbon composites.
基金Funded by the Major State Research Development Program of China during the 13th Five-Year Plan Period(No.2016YFC0700904)the Science and Technology Support Program of Hubei Province(Nos.2014BAA134 and 2015BAA107)
文摘In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs.
文摘Purpose:The aim of the study was to examine the influence of the surgical approach for robot-assisted laparoscopic prostatectomy(RALP)on long-term urinary continence status in the era of self-reported functional status measures using the Expanded Prostate Cancer Index Composite 26.Materials and methods:This is a prospective evaluation of 232 patients undergoing RALP between September,2019 and September,2020.Urinary continence status and postoperative incontinence(pad usage)were evaluated 12 months after RALP using Expanded Prostate Cancer Index Composite 26 questionnaires.Patients were categorized according to their surgical approach and outcome into the following groups:successful nerve sparing(NS),primarily without nerve sparing(prim.NNS),and no nerve sparing by secondary resection(NNS by SR).The median levels of their questionnaire outcomes were evaluated and compared using the Wilcoxon rank sum test with continuity correction.Results:Urinary continence status 12 months after RALP differed significantly between the NS and prim.NNS(p=0.0071)and the NS and NNS by SR(p=0.0076)groups.There was no significant difference between the prim.NNS and NNS by SR(p=0.53)groups.Pad usage 12 months after RALP had no significant difference with regard to SR of the neurovascular bundle(p=0.14).Conclusions:Patient-reported outcomes of long-term urinary continence status seem to show no difference in postoperative continence,regardless of whether a non-nerve-sparing result was planned or reached through SR.Instead,preservation of neurovascular bundle seems to lead to better long-term continence rates.
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
基金financially supported by the National Natural Science Foundations of China (Grant Nos. 51472222 and 51372232)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130022110006)the Fundamental Research Funds for the Central Universities for financial support (Grant No. 2652016046)
文摘In this study, a composite of form-stable phase change materials (FSPCMs) were prepared by the incorporation of a eutectic mixture of capric-palmitic-stearic acid (CA-PA-SA) into expanded vermiculite (EV) via vacuum impregnation. In the composites, CA-PA-SA was utilized as a thermal energy storage material, and EV served as the supporting material. X-ray diffraction and Fourier transform infrared spectroscopy results demonstrated that CA-PA-SA and EV in the composites only undergo physical combination, not a chemical reaction. Scanning electron microscopy images indicated that CA-PA-SA is sufficiently absorbed in the expanded vermiculite porous network. According to differential scanning calorimetry results, the 70 wt% CA-PA-SA/EV sample melts at 19.3 ℃ with a latent heat of 117.6J/g and solidifies at 17.1 ℃ with a latent heat of 118.3J/g. Thermal cycling measurements indicated that FSPCMs exhibit adequate stability even after being subjected to 200 melting-freezing cycles. Furthermore, the thermal conductivity of the composites increased by approximately 49.58% with the addition of 5 wt% of Cu powder. Hence, CA-PA-SA/EV FSPCMs are effective latent heat thermal energy storage building materials.