The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el...The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.展开更多
Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fi...Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.展开更多
Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compare...Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range.展开更多
The interfacial performance of the Fiber Bragg grating(FGB) embedded in the composite was studied and the influence of interface modification on the final profile of the spectra of the FBG sensor was examined. A typ...The interfacial performance of the Fiber Bragg grating(FGB) embedded in the composite was studied and the influence of interface modification on the final profile of the spectra of the FBG sensor was examined. A type of polyamine(Pentaethylenehexamine, PEHA) was proposed to modify the coating of PI on FBG, and the interfacial performance was evaluated by a pull-out test. Sharp improvements of the interfacial shear strength(77%) were obtained by 40 min treatment of PEHA. Compared with untreated specimen, FGB spectra of treated specimen in the tensile tests show improved linearity within the test regime, which proves that the enhanced interface is beneficial for the sensing performance.展开更多
In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional l...In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.展开更多
With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also req...With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also requires that the sports experts should not only strive for the scientific training, but should also pay much attention on the improvement and development of the sports equipment at the same time, which makes the sports equipment market have achieved unprecedented prosperity. This paper introduces the application of the fiber reinforced composite materials in the field of sports equipment, which is described mainly from the advantages of the fiber reinforced composite materials used in sports equipment areas, and from the aspects of the principles of material selection, the product varieties, the application examples and the status.展开更多
Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. A...Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. As a type of renewable natural plant fiber, kapok fiber is abundant,biocompatible and biodegradable, and its full exploration and potential application have received increasing attention in both academic and industrial fields. Based on the structure and properties of kapok fiber, this review provides a summary of recent research on kapok fiber including chemical and physical treatments, kapok fiber-based composite materials, and the application of kapok fiber as an absorbent material for oils, metal ions, dyes, and sound,with special attention to its use as an oil-absorbing material, one predominant application of kapok fiber in the coming future.展开更多
Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different mater...Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is.展开更多
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying...A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.展开更多
文摘The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment.
基金Supported by the Natural Science Foundation of Hebei Province under Grant No E2012201084the National University Students’ Innovative Training Program under Grant No 201410075004
文摘Realizing the accurate characterization for the dynamic damage process is a great challenge. Here we carry out testing simultaneously for dynamic monitoring and acoustic emission (AE) statistical analysis towards fiber composites under mode-Ⅱ delamination damage. The load curve, AE relative energy, amplitude distribution, and amplitude spectrum are obtained and the delamination damage mechanism of the composites is investigated by the microscopic observation of a fractured specimen. The results show that the micro-damage accumulation around the crack tip region has a great effect on the evolutionary process of delamination. AE characteristics and amplitude spectrum represent the damage and the physical mechanism originating from the hierarchical microstructure. Our finding provides a novel aud feasible strategy to simultaneously evaluate the dynamic response and micro-damage mechanism for fiber composites.
文摘Equilibrium paths of post-buckling are measured for large slenderness column specimens made of the fiber reinforced composite material. The influence of the initial curvature is investigated experimentally and compared with the result of the initial post-buckling theory. Both the theoretical and experimental results reveal that the column with the initial curvature has stable post-buckling behaviors and is not sensitive to the imperfection in the form of initial curvature. The experimental results show that when the lateral buckling displacement is less than 20 percent of the column length, the experimental results agree with the results from the theory of initial post-buckling quite well, while they agree with the results from the large deflection theory in a quite large range.
基金Funded by the Fundamental Research Funds for the Central Universities(xjj2017160)the National Science and Technology Major Project(2014ZX04001091)
文摘The interfacial performance of the Fiber Bragg grating(FGB) embedded in the composite was studied and the influence of interface modification on the final profile of the spectra of the FBG sensor was examined. A type of polyamine(Pentaethylenehexamine, PEHA) was proposed to modify the coating of PI on FBG, and the interfacial performance was evaluated by a pull-out test. Sharp improvements of the interfacial shear strength(77%) were obtained by 40 min treatment of PEHA. Compared with untreated specimen, FGB spectra of treated specimen in the tensile tests show improved linearity within the test regime, which proves that the enhanced interface is beneficial for the sensing performance.
文摘In order to explore the bonding failure mechanism of high modulus carbon fiber composite materials,the tensile experiment and finite element numerical simulation for single-lap and bevel-lap joints of unidirectional laminates are carried out,and the stress distributions,the failure modes,and the damage contours are analyzed. The analysis shows that the main reason for the failure of the single-lap joint is that the stress concentration of the ply adjacent to the adhesive layer is serious owing to the modulus difference,and the stress cannot be effectively transmitted along the thickness direction of the laminate. When the tensile stress of the ply exceeds its ultimate strength in the loading process,the surface fiber will fail. Compared with the single-lap joint,the bevel-lap joint optimizes the stress transfer path along the thickness direction,allows each layer of the laminate to share the load,avoids the stress concentration of the surface layer,and improves the bearing capacity of the bevel-lap joint. The improved bearing capacity of the bevellap joint is twice as much as that of the single-lap joint. The research in this paper provides a new idea for the subsequent study of mechanical properties of adhesively bonded composite materials.
文摘With the continues improving of people's living standards, more and more people work out in all kinds of sports fields beyond the busy work. On the other hand, the development of the modem competitive sports also requires that the sports experts should not only strive for the scientific training, but should also pay much attention on the improvement and development of the sports equipment at the same time, which makes the sports equipment market have achieved unprecedented prosperity. This paper introduces the application of the fiber reinforced composite materials in the field of sports equipment, which is described mainly from the advantages of the fiber reinforced composite materials used in sports equipment areas, and from the aspects of the principles of material selection, the product varieties, the application examples and the status.
基金supported by the National Natural Science Foundation of China (Nos. 21107116, 21477135)
文摘Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. As a type of renewable natural plant fiber, kapok fiber is abundant,biocompatible and biodegradable, and its full exploration and potential application have received increasing attention in both academic and industrial fields. Based on the structure and properties of kapok fiber, this review provides a summary of recent research on kapok fiber including chemical and physical treatments, kapok fiber-based composite materials, and the application of kapok fiber as an absorbent material for oils, metal ions, dyes, and sound,with special attention to its use as an oil-absorbing material, one predominant application of kapok fiber in the coming future.
基金supported by National Natural Science Foundation of China under Grant No. 51107053, 61501483 and 11402264Key Laboratory of Nondestructive Testing (Nanchang Hangkong University) ,Ministry of Education under Grant No ZD201629001+1 种基金National Key Research and Development Program of China (2016YFF0203400)Postgraduate Research & Practice Innovation Program of Jiangsu Provence under Grant No SJCX17_0487
文摘Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is.
基金supported by the National Basic Research Program of China (973 Program)(No. 2007CB714603)
文摘A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.