To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of cha...To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ...To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.展开更多
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z...This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs.展开更多
The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods w...The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.展开更多
The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several...The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.展开更多
This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rei...This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper.展开更多
To improve the application and service of C_(f)/SiC composites as advanced hightemperature structural materials,it is critical to achieve their high-efficiency and low-damage machining.In this study,the laser-ablating...To improve the application and service of C_(f)/SiC composites as advanced hightemperature structural materials,it is critical to achieve their high-efficiency and low-damage machining.In this study,the laser-ablating assisted grinding(LAAG)method was presented,and the connection of damage behavior and removal mechanism with laser and grinding processes was revealed.The results demonstrated that the surface of C_(f)/SiC composites after laser ablation was covered with a substantial number of loose oxides primarily composed of SiO2.Laser ablating process,grinding parameter and abrasive belt selection have a significant impact on the machining results.By fabricating an ablative layer with small laser scanning spacing,and selecting small abrasive grains and feed rate during grinding,the machinability was improved and a relatively lowerdamage grinding surface could be obtained.Under the optimal combination of process parameters,the grinding force and temperature of LAAG could be reduced by up to 85%and 35%,respectively.In this case,the subsurface damage of C_(f)/SiC composites occurred only in the form of microcracks rather large-scale fracture,and the formation of interface debonding and matrix cracking was significantly reduced.Furthermore,the grinding chips were mostly shown as micron-sized powders,indicating that the removal mechanism of C_(f)/SiC composites was primarily the microfractured and attrition wear of laser-ablated layer.展开更多
With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impa...With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch.展开更多
BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the...BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the high human–human transmission of SARS-CoV-2.However,there is no evidence about how SARSCoV-2 interacts with oral structures,particularly resin composites.AIM To evaluate the interaction of SARS-CoV-2 proteins with monomers present in resin composites using in silico analysis.METHODS Four SARS-CoV-2 proteins[i.e.main protease,3C-like protease,papain-like protease(PLpro),and glycoprotein spike]were selected along with salivary amylase as the positive control,and their binding affinity with bisphenol-A glycol dimethacrylate,bisphenol-A ethoxylated dimethacrylate,triethylene glycol dimethacrylate,and urethane dimethacrylate was evaluated.Molecular docking was performed using AutoDock Vina and visualised in Chimera UCSF 1.14.The best ligand–protein model was identified based on the binding energy(ΔG–kcal/moL).RESULTS Values for the binding energies ranged from-3.6 kcal/moL to-7.3 kcal/moL.The 3-monomer chain had the lowest binding energy(i.e.highest affinity)to PLpro and the glycoprotein spike.Non-polymerised monomers and polymerised chains interacted with SARS-CoV-2 proteins via hydrogen bonds and hydrophobic interactions.Those findings suggest an interaction between SARS-CoV-2 proteins and resin composites.CONCLUSION SARS-CoV-2 proteins show affinity to non-polymerised and polymerised resin composite chains.展开更多
B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites...B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system.展开更多
The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospac...The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.展开更多
Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric pro...Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred during the heat treatment procedure leads to the enhancement of dielectric constant. All the three compositions of glass-ceramic composites exhibit ferroelectricity when tested at room tem-perature. Both the values of the remanent polarization and coercive field are enhanced regularly with the gradual increase in the concentration of Gd2O3 additive under the same testing field.展开更多
BAS (BaAl 2Si 2O 8) glass ceramic was prepared by a sol gel process and the SiC W/BAS composites were fabricated by hot pressing. The transformation from hexacelsian to celsian, the microstructure and mechanical prope...BAS (BaAl 2Si 2O 8) glass ceramic was prepared by a sol gel process and the SiC W/BAS composites were fabricated by hot pressing. The transformation from hexacelsian to celsian, the microstructure and mechanical properties of the composites was investigated. The results show that the transformation promoted by adding celsian seeds is retarded in the composite by the presence of SiC whisker. SiC whisker has a good effect of improving the mechanical properties of BAS glass ceramic matrix. The toughening mechanisms are crack deflection and whisker fracture. The strengthening mechanism is loading transition. The amorphous phase at SiC W/BAS matrix interface damages the fracture toughness and high temperature strength of the composites.展开更多
This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550℃ for ...This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550℃ for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (≈24 wt%), a gas (≈8 wt%) and a solid residue (≈68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were converted into glass-ceramic tile. A mixture consisting of 95 wt% of this solid residue and 5% Na2O was melted at 1450℃ to obtain a glass frit. Powder glass samples (<63 μm) was then sintered and crystallized at 1013℃, leading to the formation of wollastonite-plagioclase glass-ceramic materials for architectural applications. Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis. Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction.展开更多
The structure and dielectric properties of (Pb,Sr)Nb2O6-NaNbO3-SiO2 glass-ceramics with different Pb and Sr contents were investigated. The XRD pattern of glass-ceramics without Sr substitution is different from tha...The structure and dielectric properties of (Pb,Sr)Nb2O6-NaNbO3-SiO2 glass-ceramics with different Pb and Sr contents were investigated. The XRD pattern of glass-ceramics without Sr substitution is different from that with Sr substitution, which indicates the existence of orthorhombic phase in the latter ones. TEM bright field observation shows nanosized microstructures, while for samples with Sr, typical eutectic microstrncture with separated crystallized bands is found in the glass matrix. Dielectric properties measurement of the samples indicates an obvious improvement of dielectric constant, dielectric loss, DC field and temperature dependence of dielectric constant when the molar ratio of Sr to Pb is 4:6.展开更多
The technology and microstructure of glass-ceramics and ceramic composite materials were studied. A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics. A...The technology and microstructure of glass-ceramics and ceramic composite materials were studied. A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics. According to the expansion coefficient of the ceramic body, that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted, fl-wollastonite was found present as the major crystalline phase in glass- ceramic. The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period. The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1 100 ℃, resulting in an interface between them. To achieve good sintered properties of glass-ceramics and the chosen ceramic body, at least a four-hour sintering time is used.展开更多
Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved tha...Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved that, for the system no chemical reaction taking place at the interface, K1c. increased proportionallywith ts increasing at the first stage, then decreased when ts reached a certain value. According to this result,a model of relationship between L, thermal mismatch (Δαr) and K1c was built up. If a chemical reaction tookplace and a new phase was formed in the interface, the K1c. of composite was effected by the combination ofrs, chemical bonding, radial inter facial stress and other factors.展开更多
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen...There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.展开更多
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi...MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs.展开更多
文摘To improve the catalytic performance of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3)(LSCF)towards carbon soot,we utilized the impregnation method to incorporate Ag into the prepared LSCF catalyst.We conducted a series of characterization tests and evaluated the soot catalytic activity of the composite catalyst by comparing it with the LaCoO_(3) group,LaFeO_(3) group,and catalyst-free group.The results indicate that the Ag-LSCF composite catalyst exhibits the highest soot catalytic activity,with the characteristic temperature values of 376.3,431.1,and 473.9℃at 10%,50%,and 90%carbon soot conversion,respectively.These values are 24.8,20.2,and 23.1℃lower than those of the LSCF group.This also shows that LSCF can improve the catalytic activity of soot after compounding with Ag,and reflects the necessity of using catalysts in soot combustion reaction.XPS characterization and BET test show that Ag-LSCF has more abundant surface-adsorbed oxygen species,larger specific surface area and pore volume than LSCF,which also proves that Ag-LSCF has higher soot catalytic activity.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金supported by the National Natural Science Foundation of China(Grant No.22075064,52302234,52272241)Zhejiang Provincial Natural Science Foundation of China under Grant No.LR24E020001+2 种基金Natural Science of Heilongjiang Province(No.LH2023B009)China Postdoctoral Science Foundation(2022M710950)Heilongjiang Postdoctoral Fund(LBH-Z21131),National Key Laboratory Projects(No.SYSKT20230056).
文摘To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
基金supported by National Natural Science Foundation of China(Project No.51878156,received by Wen-Wei Wang) and EPC Innovation Consulting Project for Longkou Nanshan LNG Phase I Receiving Terminal(Z2000LGENT0399,received by Wen-Wei Wang and ZhaoJun Zhang).
文摘This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs.
基金supported by the general project of the National Natural Science Foundation of China(No.52071042)Chongqing Natural Science Foundation Project,China(Nos.CSTB2023NSCQ-MSX0079,cstc2021ycjh-bgzxm0148)Graduate Student Innovation Program of Chongqing University of Technology,China(No.gzlcx20232008).
文摘The Mg−Al composite rods of aluminum core-reinforced magnesium alloy were prepared by the extrusion−shear(ES)process,and the microstructure,deformation mechanism,and mechanical properties of the Mg−Al composite rods were investigated at different extrusion temperatures and shear stresses.The experimental results show that the proportion of dynamic recrystallization(DRX)and texture for Al and Mg alloys are controlled by the combination of temperature and shear stress.The texture type of the Al alloys exhibits slight variations at different temperatures.With the increase of temperature,the DRX behavior of Mg alloy shifts from discontinuous DRX(DDRX),continuous DRX(CDRX),and twin-induced DRX(TDRX)dominant to CDRX,the dislocation density in Mg alloy grains decreases significantly,and the average value of Schmid factor(SF)of the basalslip system increases.In particular,partial grains exhibit a distinct dominant slip system at 390℃.The hardness and thickness of the bonding layer,as well as the yield strength and elongation of the Mg alloy,reach their maximum at 360℃as a result of the intricate influence of the combined temperature and shear stress.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52378401,12202494)the Fundamental Research Funds for the Central Universities(Grant No.30922010918)。
文摘The compression and energy absorption properties of foam geopolymers increase stress wave attenuation under explosion impacts,reducing the vibration effect on the structure.Explosion tests were conducted using several composite structure models,including a concrete lining structure(CLS)without foam geopolymer and six foam geopolymer composite structures(FGCS)with different backfill parameters,to study the dynamic response and wave dissipation mechanisms of FGCS under explosive loading.Pressure,strain,and vibration responses at different locations were synchronously tested.The damage modes and dynamic responses of different models were compared,and how wave elimination and energy absorption efficiencies were affected by foam geopolymer backfill parameters was analyzed.The results showed that the foam geopolymer absorbed and dissipated the impact energy through continuous compressive deformation under high strain rates and dynamic loading,reducing the strain in the liner structure by 52%and increasing the pressure attenuation rate by 28%.Additionally,the foam geopolymer backfill reduced structural vibration and liner deformation,with the FGCS structure showing 35%less displacement and 70%less acceleration compared to the CLS.The FGCS model with thicker,less dense foam geopolymer backfill,having more pores and higher porosity,demonstrated better compression and energy absorption under dynamic impact,increasing stress wave attenuation efficiency.By analyzing the stress wave propagation and the compression characteristics of the porous medium,it was concluded that the stress transfer ratio of FGCS-ρ-579 was 77%lower than that of CLS,and the transmitted wave energy was 90%lower.The results of this study provide a scientific basis for optimizing underground composite structure interlayer parameters.
基金funded by the Thailand Science Research and Innovation(TSRI)under Fundamental Fund 2023(Project:Advanced Materials and Manufacturing for Applications in New S-Curve Industries).
文摘This work explores the development of biodegradable laminar composite foams for cushioning applications.The focus lies on overcoming the inherent brittleness of starch foams by incorporating various paper types as rein-forcement.Tapioca starch and glutinous starch were blended in varying ratios(100:0–0:100)to optimize the base material’s properties.The morphology,density,flexural strength,and impact strength of these starch blends were evaluated.The results revealed a trade-off between impact strength and density,with increasing glutinous starch content favoring impact resistance but also leading to higher density.The optimal ratio of tapioca to glutinous starch for achieving maximumflexural strength and modulus was determined to be 60:40.Theflexural strength of the composite material at this ratio reached a peak value of 5.3±0.6 MPa,significantly surpassing theflexural strength of pure tapioca foam,which was measured to be 3.5±0.4 MPa.Building on this foundation,novel lami-nar composite foams were fabricated using the 60:40 starch blend reinforced with mulberry paper,kraft paper,and newsprint paper.To enhance the interfacial adhesion between the starch matrix and paper reinforcement,a silane coupling agent was employed at a 10 wt%loading on the paper.The incorporation of paper reinforcement into starch foams was found to enhance their mechanical properties.Specifically,flexural strength values increased from 5.3±0.6 MPa for the unreinforced starch foam to 6.8±0.6 MPa,8.1±0.9 MPa,and 7.4±0.1 MPa when reinforced with mulberry paper,kraft paper,and newsprint paper,respectively.Notably,kraft paper reinforcement led to the most enhancements inflexural strength,flexural modulus,and impact strength.This research paves the way for developing sustainable cushioning materials with competitive mechanical properties using bio-based resources like starch and paper.
基金co-supported by the National Natural Science Foundation of China(No.52205444)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQMSX1128)。
文摘To improve the application and service of C_(f)/SiC composites as advanced hightemperature structural materials,it is critical to achieve their high-efficiency and low-damage machining.In this study,the laser-ablating assisted grinding(LAAG)method was presented,and the connection of damage behavior and removal mechanism with laser and grinding processes was revealed.The results demonstrated that the surface of C_(f)/SiC composites after laser ablation was covered with a substantial number of loose oxides primarily composed of SiO2.Laser ablating process,grinding parameter and abrasive belt selection have a significant impact on the machining results.By fabricating an ablative layer with small laser scanning spacing,and selecting small abrasive grains and feed rate during grinding,the machinability was improved and a relatively lowerdamage grinding surface could be obtained.Under the optimal combination of process parameters,the grinding force and temperature of LAAG could be reduced by up to 85%and 35%,respectively.In this case,the subsurface damage of C_(f)/SiC composites occurred only in the form of microcracks rather large-scale fracture,and the formation of interface debonding and matrix cracking was significantly reduced.Furthermore,the grinding chips were mostly shown as micron-sized powders,indicating that the removal mechanism of C_(f)/SiC composites was primarily the microfractured and attrition wear of laser-ablated layer.
基金supported by the Natural Science Foundation of Shandong Provincial of China(Grant Number ZR2022ME093)the Natural Science Foundation of China(Grant Number 51675315).
文摘With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch.
文摘BACKGROUND Due to saliva and salivary glands are reservoir to severe acute respiratory syndrome-coronavirus 2(SARS-CoV-2),aerosols and saliva droplets are primary sources of cross-infection and are responsible for the high human–human transmission of SARS-CoV-2.However,there is no evidence about how SARSCoV-2 interacts with oral structures,particularly resin composites.AIM To evaluate the interaction of SARS-CoV-2 proteins with monomers present in resin composites using in silico analysis.METHODS Four SARS-CoV-2 proteins[i.e.main protease,3C-like protease,papain-like protease(PLpro),and glycoprotein spike]were selected along with salivary amylase as the positive control,and their binding affinity with bisphenol-A glycol dimethacrylate,bisphenol-A ethoxylated dimethacrylate,triethylene glycol dimethacrylate,and urethane dimethacrylate was evaluated.Molecular docking was performed using AutoDock Vina and visualised in Chimera UCSF 1.14.The best ligand–protein model was identified based on the binding energy(ΔG–kcal/moL).RESULTS Values for the binding energies ranged from-3.6 kcal/moL to-7.3 kcal/moL.The 3-monomer chain had the lowest binding energy(i.e.highest affinity)to PLpro and the glycoprotein spike.Non-polymerised monomers and polymerised chains interacted with SARS-CoV-2 proteins via hydrogen bonds and hydrophobic interactions.Those findings suggest an interaction between SARS-CoV-2 proteins and resin composites.CONCLUSION SARS-CoV-2 proteins show affinity to non-polymerised and polymerised resin composite chains.
基金supported by the National Natural Science Foundation of China(No.52101138,No.52201075)the Natural Science Foundation of Hubei Province(No.2023AFB798,No.2022CFB614)+3 种基金the Shenzhen Science and Technology Program(No.JCYJ20220530160813032)the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202309,No.SKLSP202308)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011227)the State Key Laboratory of Powder Metallurgy of Central South University(No.SklpmKF-05)。
文摘B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system.
基金co-supported by the National Natural Science Foundation of China(Nos.12372127,12202085,12302464)the Fundamental Research Funds for the Central Universities,China(No.2024CDJXY009)+1 种基金the Chongqing Outstanding Youth Fund,China(No.CSTB2024NSCQ-JQX0028)the Chongqing Natural Science Foundation,China(Nos.cstc2021ycjh-bgzxm0117,CSTB2022NSCQ-MSX0608)。
文摘The high-temperature mechanical behaviors of Multi-Layer Composite Panels(MCP)and Corrugated Sandwich Panels(CSP)of Continuous Glass Fiber-Reinforced Polypropylene(CGFRPP)are critical for their application in aerospace fields,which have been rarely mentioned in previous studies.High-temperature quasi-static tensile and compression tests on CGFRPP MCP are conducted first.The results showed that the tensile and compression strength,stiffness,and tensile modulus of MCP decreased with increasing temperature.The Gibson model was found to be more suitable for predicting the high-temperature mechanical performance of MCP after comparing the calculated results of different theoretical models with experimental data.Secondly,hightemperature planar compression tests were conducted on the CGFRPP CSP,revealing that the main failure modes were corrugated core buckling and delamination between the face panel and core material,with delamination being intensified at higher temperatures.Therefore,we proposed a strength theoretical model that considers structural buckling failure and interface delamination failure,and introduced the influence factor to evaluate the effect of interface delamination on structural strength.
基金supported by the National Natural Science Foundation of China (No. 51107005)
文摘Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred during the heat treatment procedure leads to the enhancement of dielectric constant. All the three compositions of glass-ceramic composites exhibit ferroelectricity when tested at room tem-perature. Both the values of the remanent polarization and coercive field are enhanced regularly with the gradual increase in the concentration of Gd2O3 additive under the same testing field.
文摘BAS (BaAl 2Si 2O 8) glass ceramic was prepared by a sol gel process and the SiC W/BAS composites were fabricated by hot pressing. The transformation from hexacelsian to celsian, the microstructure and mechanical properties of the composites was investigated. The results show that the transformation promoted by adding celsian seeds is retarded in the composite by the presence of SiC whisker. SiC whisker has a good effect of improving the mechanical properties of BAS glass ceramic matrix. The toughening mechanisms are crack deflection and whisker fracture. The strengthening mechanism is loading transition. The amorphous phase at SiC W/BAS matrix interface damages the fracture toughness and high temperature strength of the composites.
文摘This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550℃ for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (≈24 wt%), a gas (≈8 wt%) and a solid residue (≈68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were converted into glass-ceramic tile. A mixture consisting of 95 wt% of this solid residue and 5% Na2O was melted at 1450℃ to obtain a glass frit. Powder glass samples (<63 μm) was then sintered and crystallized at 1013℃, leading to the formation of wollastonite-plagioclase glass-ceramic materials for architectural applications. Thermal stability and crystallization mechanism have been studied by Differential Thermal Analysis. Mineralogy analyses of the glass-ceramic materials were carried out using X-ray Diffraction.
文摘The structure and dielectric properties of (Pb,Sr)Nb2O6-NaNbO3-SiO2 glass-ceramics with different Pb and Sr contents were investigated. The XRD pattern of glass-ceramics without Sr substitution is different from that with Sr substitution, which indicates the existence of orthorhombic phase in the latter ones. TEM bright field observation shows nanosized microstructures, while for samples with Sr, typical eutectic microstrncture with separated crystallized bands is found in the glass matrix. Dielectric properties measurement of the samples indicates an obvious improvement of dielectric constant, dielectric loss, DC field and temperature dependence of dielectric constant when the molar ratio of Sr to Pb is 4:6.
基金the National Supporting Plan of China(No. 2006BAJ02B03)
文摘The technology and microstructure of glass-ceramics and ceramic composite materials were studied. A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics. According to the expansion coefficient of the ceramic body, that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted, fl-wollastonite was found present as the major crystalline phase in glass- ceramic. The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period. The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1 100 ℃, resulting in an interface between them. To achieve good sintered properties of glass-ceramics and the chosen ceramic body, at least a four-hour sintering time is used.
文摘Nine kinds of glass-ceramic matrix composites with different compositions and inter facial strength(L) were prepared. The influence of Ti on the fracture toughness (K1c.) of composites was studied. It was discoved that, for the system no chemical reaction taking place at the interface, K1c. increased proportionallywith ts increasing at the first stage, then decreased when ts reached a certain value. According to this result,a model of relationship between L, thermal mismatch (Δαr) and K1c was built up. If a chemical reaction tookplace and a new phase was formed in the interface, the K1c. of composite was effected by the combination ofrs, chemical bonding, radial inter facial stress and other factors.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0058)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120041)。
文摘There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.
基金supported by the Basic Scientific Research Funds for Colleges and Universities affiliated to Hebei Province(JST2022005)Thanks are given to the financial support from the National Natural Science Foundation of China(22005099).
文摘MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs.