Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA...Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF).展开更多
Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study dea...Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.展开更多
Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-ar...Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates.展开更多
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida...Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.展开更多
A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subs...A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction.展开更多
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep...Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.展开更多
Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribologi...Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.展开更多
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib...The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.展开更多
In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coa...In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred展开更多
In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface o...In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.展开更多
In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosi...In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosion resistance of Ce-based conversion coatings and Ce-silane-ZrO2 composite coatings were investigated by SEM, AFM, XPS and EIS analyses. Stacking structure of the composite coating can be observed. The inner layer of the composite coatings mainly consists of oxide and hydroxide of Ce(Ⅲ), and the silane network is composed of the outer layer together with a small amount of Ce(Ⅳ) hydroxide. By adding silane and ZrO2 nanoparticles into Ce-based conversion coatings, the porosity and the micro cracks of the coatings decrease apparently accompanying with the improvement of the corrosion resistance.展开更多
TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite ...TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.展开更多
The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-...The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their p...Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications.Therefore,a micro-arc oxidation/graphene oxide/stearic acid(MAO/GO/SA)superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation(MAO)technology,electrodeposition technique,and self-assembly technology.The composition and microstructure of the coating were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopy,and Raman spectroscopy.The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization,electrochemical impedance spectroscopy tests,and salt spray tests.The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity,and it attained a contact angle of 159.53°±2°.The MAO/GO/SA composite coating exhibited high resistance to corrosion,according to electrochemical and salt spray tests.展开更多
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ...The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.展开更多
BNi-2/WC composite wear-resisting coating was prepared on carbon steel by the method of induction brazing.The microstructure and phase composition of the composite coating were analyzed,and the bonding strength and we...BNi-2/WC composite wear-resisting coating was prepared on carbon steel by the method of induction brazing.The microstructure and phase composition of the composite coating were analyzed,and the bonding strength and wear-resisting performance of the coating were tested.During the process of induction brazing,the tungsten carbide partially dissolves and reacts with the filler metal alloy to form NiW compound phase,which realizes the metallurgical combination of tungsten carbide and filler metal alloy.The matrix of the filler metal alloy consists of Ni solid solution and Ni_(3)B/Ni_(3)Si eutectic phase,and the metallurgical diffusion reaction occurs between the filler metal alloy and the steel matrix.The mechanical analysis results show that the self-strength of the composite coating reaches 140 MPa and the bonding strength of the filler metal alloy to the steel matrix reaches 360 MPa.The dry sand rubber wheel wear testing machine showed that the coating weight loss was only 0.2824 g,which was only 1/5 of the weight loss of 65 Mn matrix under the same conditions.展开更多
The addition of 2,5-pyridinedicarboxylic acid(2,5-PDCA)to the Mg-Al LDH coating,which was prepared by one-step hydrothermal synthesis,had extremely enhanced the corrosion protection of AZ31 Mg alloy,although the 2,5-P...The addition of 2,5-pyridinedicarboxylic acid(2,5-PDCA)to the Mg-Al LDH coating,which was prepared by one-step hydrothermal synthesis,had extremely enhanced the corrosion protection of AZ31 Mg alloy,although the 2,5-PDCA could not be intercalated into the interlayer spacing.The corrosion current density of 0.05 mol L^(−1)2,5-PDCA LDH containing LDH coating is 3.18 nA cm^(−2),reduced by two orders of magnitude compared to the LDH coating without inhibitor,and the corrosion inhibition efficiency of the coating is 98.05%.The coating formed on the surface of AZ31 was peeled off from the substrate by using a mechanical method and SEM observation of the cross-section showed that the coating consisted of three different layers.The innermost layer is a thick layer that consists of Mg(OH)_(2)and the intermediate layer is LDH,which is vertical to the substrate and the outmost layer is a thin but very dense deposit layer of LDH agglomerates with complexes of 2,5-PDCA and Mg.This kind of sediment/LDH/Mg(OH)_(2)three-layer composite structure was accountable for the increase in the corrosion resistance of AZ31 Mg alloy.展开更多
YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering m...YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering method. The structures and phaseevolution of the coatings were studied with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersivespectrometry (EDS). The relation between microstructures and properties of the BPs-coated samples was discussed. The results showthat the adhesion strength and gain mass of the BPs-coated samples with isothermal oxidation at 1100℃ for 100 h are 3.3 N and0.00817 mg/cm^2, respectively, while those of the non-BPs-coated sample are 2.6 N and 0.00559 mg/cm^2, respectively. The EDSmapping analysis indicates that an obvious outward diffusion of Cr from the substrate to BPs coated samples occurs after isothermaloxidation. The BPs-coated sample shows the superior adhesion and oxidation resistance compared with non-BPs-coated samples.展开更多
基金the National Council of Humanities,Science,and Technology(CONAHCYT)through the"Investigadores por Mexico"program,projects 848 and 881。
文摘Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF).
基金This paper has obtained the support of the National Natural Science Foundation of China(No.51902039)High-Level Talents Innovation Support Plan of Dalian(No.2020RQ127)Scientific Research Project of Liaoning Provincial Department Education(No.LJKZ0722)。
文摘Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites.
基金supported by Guangxi Natural Science Foundation of China(No.2020GXNSFAA159011)National Natural Science Foundation of China(No.51664011)Guangxi Key Laboratory Foundation of China(No.EMFM20211120).
文摘Mg alloys are considered the most promising engineering materials because of their unique properties.However,the uncontrolled corrosion rate of these alloys limits their applications.Therefore,in this study,a micro-arc oxidation layer was used as a transition layer to“directly”grow a zinc-based metal-organic framework(MOF)composite coating on the surface of a Mg alloy(AZ91D).Herein,the two zeolitic imidazolate framework(ZIF-8)coatings with different morphologies were separately prepared by homologous metal oxide induction and a one-step in-situ growth method.The superhydrophobic composite coating showed strong hydrophobicity and self-cleaning properties,which could prevent the penetration of water and corrosive ions(Cl^(−))into the surface of AZ91D.Electrochemical tests demonstrated that the super-hydrophobic composite coatings greatly enhanced the corrosion resistance of AZ91D,and the corrosion current density decreased from 10^(−5)to 10^(−9)A/cm^(2).These results indicate that the ZIF-8 coatings are beneficial for improving the hydrophobicity and enhancing the corrosion resistance of Mg alloys.Therefore,MOF composite coatings provide a new strategy that can be used to prepare multifunctional anticorrosion coatings on metal substrates.
文摘Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
基金The study was supported by the Russian Science Foundation grant no.22-73-10149,https://rscf.ru/project/22-73-10149/.
文摘A novel combined method for the formation of composite coatings on the Mg-Mn-Ce alloy is developed.Ceramic like matrix was formed on the Mg alloy surface by the plasma electrolytic oxidation.Then the samples were subsequently processed by dip-coating in an alcohol suspension of superdispersed polytetrafluoroethylene and spraying with the tetrafluoroethylene telomers solution.SEM,OSP,and SPM was used to study structure of formed surfaces.It was established by measurements of CA and CAH,as well as surface free energy calculations that formed coatings demonstrate superhydrophobic properties due to the presence of an irregular hierarchical surface structure and low surface free energy of fluoropolymers.The coating preserves its hydrophobic properties after exposure to high and low temperatures,for a long time as well as being in corrosive environments.EDS and XRD data analysis confirmed the presence of organofluorine compounds in the composite layers,including in the form of crystalline polytetrafluoroethylene.Using potentiodynamic polarization test and EIS,it was found that the resulting coatings significantly increase the corrosion resistance of Mg material.These data are also confirmed by salt spray tests for 40 days.Incorporation of fluoropolymers additionally decrease coatings coefficient of friction.
文摘Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO.
基金Project (JPPT-115-5-1759) supported by the National Defense Science and Technology Industry Committee of China Project (20090162120080) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2010FJ3012) supported by the Program of Science and Technology of Hunan Province, China
文摘Multi-walled carbon nanotubes (MWNTs) were wet-milled in the presence of ammonia and cationic surfactant and then used as reinforcements to prepare Ni-P-MWNTs composite coatings by electroless plating. The tribological performances of the composite coatings under dry condition were investigated in comparison with 45 steel and conventional Ni-P coating, Micrographs show that short MWNTs with uniform length and open tips were obtained through the wet-milling process. The results of wear test reveal that the Ni-P-MWNTs composite coatings posses much better friction reduction and anti-wear performances when compared with 45 steel and Ni-P coating. Within the MWNTs content range of 0.74%-1.97%, the friction coefficient and the volume wear rate of the composite coatings decrease gradually and reach the minimum values of 0.08 and 6.22x10-15 m3/(N.m), respectively. The excellent tribological performances of the composite coatings can be attributed to the introduction of MWNTs, which play both roles of reinforcements and solid lubricant during the wear process.
文摘The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear.
文摘In order to reduce the friction coefficients and improve the wear resistance of mechanical parts, which work in the severe friction and wear conditions at heavy loads, the graphite/CaFg/TiC/Ni-base alloy composite coatings were prepared by plasma spray and their tribological behavior and mechanisms were investigated. The results show that the friction coefficients of the composite coatings are in the range of 0.22-0.288, which are reduced by 25.9% to 53% compared with those of the pure Ni-base alloy coatings, and the wear rates of the former are 18.6%-70.1% less than those of the latter. When wear against GCr15 steel balls, a transferred layer mainly composed of ferric oxides, graphite and CaF2 may gradually develop on the worn surface of the composite coatings, which made the friction and wear between GCr15 steel ball and the composite coatings change into that between the former and the transferred layer. So the friction coefficients and the wear lubrication effect of the transferred layer. The main wear layer in friction process. rates of the composite coatings are greatly reduced because of the solid mechanism of the composite coatings is delamination of the transferred
文摘In order to reduce the friction coefficients and further improve the anti-wear properties of Ni-base alloy coatings reinforced by TiC particles,graphite/TiC/Ni-base alloy(GTN) coatings were prepared on the surface of 45 carbon steel.The effects of graphite content on the microstructure and tribological properties of the GTN coatings were investigated.The results show that the addition of graphite to the GTN coatings may greatly reduce the friction coefficients and improve their wear resistance.The 6.56GTN and 12.71GTN coatings exhibit excellent integrated properties of anti-friction and wear resistance under low and high loads,respectively.Under a low load,the wear mechanisms of the GTN coatings are mainly multi-plastic deformation with slight abrasive wear and gradually change into mixture of multi-plastic deformation,delamination and micro-cutting wear with the increase of graphite fraction.As the load increases,the main wear mechanisms gradually change from micro-cracks,micro-cutting and adhesive wear to micro-cutting and micro-fracture with the increase of graphite fraction.
基金Project(51172217)supported by the National Natural Science Foundation of ChinaProject(2010GGX10310)supported by Shandong Science and Technology Program,China+1 种基金Project(10-3-4-1-jch)supported by Science and Technology Program on Basic Research Project of Qingdao,ChinaProject(4500-841313001)supported by Fundamental Research Funds for the Central Universities,China
文摘In order to improve the property of traditional Ce-based conversion coatings, Ce-silane-ZrO2 composite coatings were successfully prepared on 1060 aluminum. The microstructure, chemical element composition and corrosion resistance of Ce-based conversion coatings and Ce-silane-ZrO2 composite coatings were investigated by SEM, AFM, XPS and EIS analyses. Stacking structure of the composite coating can be observed. The inner layer of the composite coatings mainly consists of oxide and hydroxide of Ce(Ⅲ), and the silane network is composed of the outer layer together with a small amount of Ce(Ⅳ) hydroxide. By adding silane and ZrO2 nanoparticles into Ce-based conversion coatings, the porosity and the micro cracks of the coatings decrease apparently accompanying with the improvement of the corrosion resistance.
文摘TiC particles reinforced Ni-based alloy composite coatings were prepared on 7005 aluminum alloy by plasma spray. The effects of load, speed and temperature on the tribological behavior and mechanisms of the composite coatings under dry friction were researched. The wear prediction model of the composite coatings was established based on the least square support vector machine (LS-SVM). The results show that the composite coatings exhibit smaller friction coefficients and wear losses than the Ni-based alloy coatings under different friction conditions. The predicting time of the LS-SVM model is only 12.93%of that of the BP-ANN model, and the predicting accuracies on friction coefficients and wear losses of the former are increased by 58.74%and 41.87%compared with the latter. The LS-SVM model can effectively predict the tribological behavior of the TiCP/Ni-base alloy composite coatings under dry friction.
文摘The NiCrBSi-Y2O3 composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi-Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi-0.5Y2O3 composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6-10 N, the NiCrBSi-0.5Y2O3 composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金financially supported by the Guangxi Natural Science Foundation,China(No.2020GXNSFAA 159011)the National Natural Science Foundation of China(No.51664011).
文摘Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications.Therefore,a micro-arc oxidation/graphene oxide/stearic acid(MAO/GO/SA)superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation(MAO)technology,electrodeposition technique,and self-assembly technology.The composition and microstructure of the coating were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopy,and Raman spectroscopy.The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization,electrochemical impedance spectroscopy tests,and salt spray tests.The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity,and it attained a contact angle of 159.53°±2°.The MAO/GO/SA composite coating exhibited high resistance to corrosion,according to electrochemical and salt spray tests.
基金the financial support from the National Natural Science Foundation of China(Nos.51572061,51621091,and 51321061)the Heilongjiang Touyan Team Program。
文摘The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing.
基金supported by the National Natural Science Foundation of China(Grant No.U2004186).
文摘BNi-2/WC composite wear-resisting coating was prepared on carbon steel by the method of induction brazing.The microstructure and phase composition of the composite coating were analyzed,and the bonding strength and wear-resisting performance of the coating were tested.During the process of induction brazing,the tungsten carbide partially dissolves and reacts with the filler metal alloy to form NiW compound phase,which realizes the metallurgical combination of tungsten carbide and filler metal alloy.The matrix of the filler metal alloy consists of Ni solid solution and Ni_(3)B/Ni_(3)Si eutectic phase,and the metallurgical diffusion reaction occurs between the filler metal alloy and the steel matrix.The mechanical analysis results show that the self-strength of the composite coating reaches 140 MPa and the bonding strength of the filler metal alloy to the steel matrix reaches 360 MPa.The dry sand rubber wheel wear testing machine showed that the coating weight loss was only 0.2824 g,which was only 1/5 of the weight loss of 65 Mn matrix under the same conditions.
文摘The addition of 2,5-pyridinedicarboxylic acid(2,5-PDCA)to the Mg-Al LDH coating,which was prepared by one-step hydrothermal synthesis,had extremely enhanced the corrosion protection of AZ31 Mg alloy,although the 2,5-PDCA could not be intercalated into the interlayer spacing.The corrosion current density of 0.05 mol L^(−1)2,5-PDCA LDH containing LDH coating is 3.18 nA cm^(−2),reduced by two orders of magnitude compared to the LDH coating without inhibitor,and the corrosion inhibition efficiency of the coating is 98.05%.The coating formed on the surface of AZ31 was peeled off from the substrate by using a mechanical method and SEM observation of the cross-section showed that the coating consisted of three different layers.The innermost layer is a thick layer that consists of Mg(OH)_(2)and the intermediate layer is LDH,which is vertical to the substrate and the outmost layer is a thin but very dense deposit layer of LDH agglomerates with complexes of 2,5-PDCA and Mg.This kind of sediment/LDH/Mg(OH)_(2)three-layer composite structure was accountable for the increase in the corrosion resistance of AZ31 Mg alloy.
基金Project(51271111)supported by the National Natural Science Foundation of ChinaProject(14KY0515)support by Graduate Research and Innovation Special Projects of Shanghai University of Engineering Science,China
文摘YSZ/(Ni, Al) composite coatings were deposited on Inconel600 superalloy with ball peening (BP) and without (non BP)treatment using the electrophoretic deposition (EPD) technique, followed by vacuum sintering method. The structures and phaseevolution of the coatings were studied with X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersivespectrometry (EDS). The relation between microstructures and properties of the BPs-coated samples was discussed. The results showthat the adhesion strength and gain mass of the BPs-coated samples with isothermal oxidation at 1100℃ for 100 h are 3.3 N and0.00817 mg/cm^2, respectively, while those of the non-BPs-coated sample are 2.6 N and 0.00559 mg/cm^2, respectively. The EDSmapping analysis indicates that an obvious outward diffusion of Cr from the substrate to BPs coated samples occurs after isothermaloxidation. The BPs-coated sample shows the superior adhesion and oxidation resistance compared with non-BPs-coated samples.