According to traditional phenomenological fatigue methodology and moderncontinuum damage mechanics theory, dual fatigue cumulative damage rules to predict fatigue damageformation and propagation lives of the notched c...According to traditional phenomenological fatigue methodology and moderncontinuum damage mechanics theory, dual fatigue cumulative damage rules to predict fatigue damageformation and propagation lives of the notched composite laminates are presented. A 3-dimensionaldamage constitutive equation of anisotropic composites is also established. Damage strain energyrelease rate is interpreted as a driving force of the fatigue delamination damage propagation. A newdamage evolution equation and a damage propagation σ_a-σ_m-N~* surface (stress amplitude-meanstress-life surface) are derived. Hence, using the method above, the fatigue life of compositecomponents can be predicted. Finally, theoretically predicted results are compared with experimentaldata. It is found that the deviation of theoretic prediction from experimental results is about22%.展开更多
A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-mes...A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data.展开更多
To research the approach of predicting composites fatigue life,the cumulative fatigue damage of fiber-reinforced plastic laminates(FRP) was investigated,and based on the complex exponential function,the residual stren...To research the approach of predicting composites fatigue life,the cumulative fatigue damage of fiber-reinforced plastic laminates(FRP) was investigated,and based on the complex exponential function,the residual strength model was obtained. This model can accurately describe the propagation of cumulative fatigue damage of FRP in three stages,especially in the initial stage and the ceasing stage. Applying this model in the experiment with two loading cycles,it can be found that the prediction result has good coincidence with experimental data. So a reliable residual strength model can be provided for studying the cumulative fatigue damage of FRP.展开更多
The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted lami...The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%.展开更多
This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncerta...This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50005003)Aeronautic Science Foundation of China (No.0lA5l0l1)
文摘According to traditional phenomenological fatigue methodology and moderncontinuum damage mechanics theory, dual fatigue cumulative damage rules to predict fatigue damageformation and propagation lives of the notched composite laminates are presented. A 3-dimensionaldamage constitutive equation of anisotropic composites is also established. Damage strain energyrelease rate is interpreted as a driving force of the fatigue delamination damage propagation. A newdamage evolution equation and a damage propagation σ_a-σ_m-N~* surface (stress amplitude-meanstress-life surface) are derived. Hence, using the method above, the fatigue life of compositecomponents can be predicted. Finally, theoretically predicted results are compared with experimentaldata. It is found that the deviation of theoretic prediction from experimental results is about22%.
文摘A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data.
基金Sponsored by the National Basic Research Development Program of China (973 Program)(Grant No. 61379)
文摘To research the approach of predicting composites fatigue life,the cumulative fatigue damage of fiber-reinforced plastic laminates(FRP) was investigated,and based on the complex exponential function,the residual strength model was obtained. This model can accurately describe the propagation of cumulative fatigue damage of FRP in three stages,especially in the initial stage and the ceasing stage. Applying this model in the experiment with two loading cycles,it can be found that the prediction result has good coincidence with experimental data. So a reliable residual strength model can be provided for studying the cumulative fatigue damage of FRP.
文摘The existing models are established based on the fatigue behavior of impacted laminates.It makes them unsuitable for the general use.So,a general 3-D progressive damage fatigue life prediction method for impacted laminates is developed based on the progressive damage theory and the fatigue behavior of unimpacted unidirectional plies.The model can predict the fatigue life of laminated composites with different ply parameters,geometry,impact damage,and fatigue loading conditions.In order to obtain the impact damage information in the case that no impact test data is available,a whole damage process analysis method for laminated composites under the impact loading and the fatigue loading is analyzed.The predicted damage statuses of composite laminates can be used to analyze the post-impact fatigue life.A parametric modeling program is developed to predict the impact damage process and the fatigue life of impacted laminates based on the whole damage process analysis method.The most relative error between the prediction and the test results is 7.78%.
文摘This paper investigates the reliability of composite laminates with various lay-ups under fatigue loading.The prediction of failure probability of composite laminates subjected to different loads involves many uncertainties associated with mechanical properties,loading,and boundary conditions.Failure in the composite material is truly hard to trace because there are individual faults in each ply,and we face a stochastic process due to the scatter in the mechanical properties.The continuum damage mechanics(CDM),as a powerful approach,is applied to model the damage of fiber,matrix,and fiber/matrix debonding.This method defines criteria for damage detection and determines safe zones.The material constitutive equations are executed using a subroutine inAbaqus.The first-order reliability method and second-order reliability method have been applied to examine the reliability of laminated composites.The results are compared with those of the Monte Carlo simulation.Different composite laminates under different stress levels are considered for the failure probability investigation.The limit state functions and random variables have been determined based on the CDM model.Finally,the effects of the number of cycles,applied stress,and stacking sequence of the laminate on the reliability and fatigue life in fiber-reinforced laminated composites are assessed.