Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrer...Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrereinforced composite materials are proposed.The performed study is based on the asymptotic reduction of the governing biharmonic problem into two harmonic problems.All solutions are obtained in a closed analytical form.The obtained results can be used for the calculation of pull-out and pushout tests,as well as for the investigation of the fracture of composite materials.展开更多
A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response ...A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.展开更多
The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of...The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.展开更多
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ...The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.展开更多
This study presents an analytical shear-lag model to illustrate the interface crack propagation of carbon nanotube (CNT) reinforced polymer-matrix composites (PMCs) using representative volume element (RVE). In the mo...This study presents an analytical shear-lag model to illustrate the interface crack propagation of carbon nanotube (CNT) reinforced polymer-matrix composites (PMCs) using representative volume element (RVE). In the model, a 3D cylindrical RVE is picked to present the nanocomposite in which CNT/polymer chemically non-bonded interface is taken into consideration. In the non-bonded interface, the stress transfer of CNT is generally considered to be controlled by the combined contribution of mechanical interlocking, thermal residual stress, Poisson’s contraction and van der Waals (vdW) interaction. Since CNT/matrix interface becomes debonded due to crack propagation, vdW interaction which is a function of relative radial displacement of the CNT/matrix interface makes the modeling of the interface tricky and challenging. In order to solve this complexity, an iterative approach is proposed to calculate the vdW interaction for debonded CNT/matrix interface accurately. The analytical results aim to obtain the characteristics load displacement relationship in static crack propagation for CNT reinforced PMCs.展开更多
The paper describes use of self-consistent finite element method (SCFEM) for predicting effective properties of fiber composite with partially debonded interface. The effective longitudinal Young's modulus and she...The paper describes use of self-consistent finite element method (SCFEM) for predicting effective properties of fiber composite with partially debonded interface. The effective longitudinal Young's modulus and shear modulus for unidirectional fiber reinforced composites with fiber-end cracks are calculated. Numerical results show that the effective properties are considerably influenced by the fiber-end cracks. The effects of microstructural parameters, such as fiber volume fraction, modulus ratio of the constituents and fiber aspect, on the effective properties of the composites were discussed.展开更多
Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products...Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.展开更多
To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy me...To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles.展开更多
An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evan...An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.展开更多
An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations...An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.展开更多
A macro-structure-toughened SiC particle reinforced LD2 aluminum alloy matrix (SiCp-LD2/LD2) composite was designed and fabricated based on considering the main factors which result in low room temperature fracture to...A macro-structure-toughened SiC particle reinforced LD2 aluminum alloy matrix (SiCp-LD2/LD2) composite was designed and fabricated based on considering the main factors which result in low room temperature fracture toughness of conventional metal matrix composites. Its room temperature fracture toughness was tested using three-point bending samples with sing1e edge notches. Compared with conventional SiCp/LD2 composites fabricated by stirring casting in case of same particle size and similar reinforcement volume fraction, this composite has a higher room temperature fracture toughness KQ. It shows strong resistance to crack propagating. The crack in it can propagate stably for a long time on the maximum load, therefore abrupt fracture occurring in most conventional composites can be avoided. Bending fractography (SEM) shows that the fracture mechanism of this material is different from SiCp/LD2 composite and the deformation of the unreinforced LD2 matrix and the SiCp-LD2/LD2 interface debonding are the main toughening mechanisms of this composite.展开更多
The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first stu...The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.展开更多
基金supported by the German Research Foundation(Deutsche Forschungsgemeinschaft)(WE 736/30-1)
文摘Imperfect bonding between the constitutive components can greatly affect the properties of the composite structures.An asymptotic analysis of different types of imperfect interfaces arising in the problem of 2D fibrereinforced composite materials are proposed.The performed study is based on the asymptotic reduction of the governing biharmonic problem into two harmonic problems.All solutions are obtained in a closed analytical form.The obtained results can be used for the calculation of pull-out and pushout tests,as well as for the investigation of the fracture of composite materials.
基金Jiangsu Postdoctoral Science Foundation (0902013C)Innovation Foundation for Young Teachers in University of Aeronautics and Astronautics (Y1024-054)
文摘A multiscale method for simulating the dynamic response of ceramic matrix composite (CMC) with matrix cracks is developed. At the global level, the finite element method is employed to simulate the dynamic response of a CMC beam. While at the local level, the multiscale mechanical method is used to estimate the stress/strain response of the material. A distributed computing system is developed to speed up the simulation. The simulation of dynamic response of a Nicalon/CAS-II beam being subjected to harmonic loading is performed as a numerical example. The results show that both the stress/strain responses under tension and compressive loading are nonlinear. These conditions result in a different response compared with that of elastic beam, such as: 1) the displacement response is not symmetric about the axis of time; 2) in the condition of small external load, the response at first order natural frequency is limited within a finite range; 3) decreasing the matrix crack space will increase the displace- ment response of the beam.
基金the National Natural Science Foundation of China (No. 50375019).
文摘The matrix accumulative roll bonding technology (MARB) can improve the matrix performance of metal composite and strengthen the bonding quality of the interface./n this research, for the fwst time, the technology of MARB was proposed. A sound Cu/AI bonding composite was obtained using the MARB process and the bonding characteristic of the interface was studied using scanning electricity microscope (SEM) and energy-dispersive spectroscopy (EDS). The result indicated that accumulation cycles and diffusion annealing temperature were the most important factors for fabricating a Cu/AI composite material. The substrate aluminum was strengthened by MARB, and a high quality Cu/AI composite with sound interface was obtained as well.
基金Supported by the National Natural Science Foundation of China(51075204)the Graduate Innovation Foundation of Jiangsu Province(CX08B-133Z)the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics(BCXJ08-05)~~
文摘The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data.
文摘This study presents an analytical shear-lag model to illustrate the interface crack propagation of carbon nanotube (CNT) reinforced polymer-matrix composites (PMCs) using representative volume element (RVE). In the model, a 3D cylindrical RVE is picked to present the nanocomposite in which CNT/polymer chemically non-bonded interface is taken into consideration. In the non-bonded interface, the stress transfer of CNT is generally considered to be controlled by the combined contribution of mechanical interlocking, thermal residual stress, Poisson’s contraction and van der Waals (vdW) interaction. Since CNT/matrix interface becomes debonded due to crack propagation, vdW interaction which is a function of relative radial displacement of the CNT/matrix interface makes the modeling of the interface tricky and challenging. In order to solve this complexity, an iterative approach is proposed to calculate the vdW interaction for debonded CNT/matrix interface accurately. The analytical results aim to obtain the characteristics load displacement relationship in static crack propagation for CNT reinforced PMCs.
基金The project supported by the National Natural Science Foundation of China
文摘The paper describes use of self-consistent finite element method (SCFEM) for predicting effective properties of fiber composite with partially debonded interface. The effective longitudinal Young's modulus and shear modulus for unidirectional fiber reinforced composites with fiber-end cracks are calculated. Numerical results show that the effective properties are considerably influenced by the fiber-end cracks. The effects of microstructural parameters, such as fiber volume fraction, modulus ratio of the constituents and fiber aspect, on the effective properties of the composites were discussed.
文摘Stress intensity factors for a three dimensional rectangular interfacial crack were considered using the body force method. In the numerical calculations, unknown body force densities were approximated by the products of the fundamental densities and power series; here the fundamental densities are chosen to express singular stress fields due to an interface crack exactly. The calculation shows that the numerical results are satisfied. The stress intensity factors for a rectangular interface crack were indicated accurately with the varying aspect ratio, and bimaterial parameter.
基金Project (51001071) supported by the National Natural Science Foundation of China Projects (2012CB619400, 2012CB619600) supported by the National Basic Research Program of China+1 种基金Project (2010DFA52550) supported by the International S&T Cooperation Program of ChinaProject (20100470031) supported by China Postdoctoral Science Foundation
文摘To develop new type of high damping metal matrix composites, large grain size barium titanate (BaTiO3) ceramic was sintered and added into Al powder to fabricate BaTiO3/Al composites through the powder metallurgy method and hot extrusion. The damping properties of BaTiO3 ceramic, Al matrix and BaTiO3/Al composites were examined by dynamic mechanical analysis in the temperature range from 273 K to 573 K. The results show that although BaTiO3 exhibits high damping (tan δ=0.12) below 400 K, the damping capacity of 10%BaTiO3/Al (mass fraction) composites below 400 K is not increased as compared to the Al matrix. On the other hand, the damping capacity above 450 K is greatly enhanced due to the motion of dislocations at the interfaces between ceramic particles and Al matrix. The failure of exerting the intrinsic damping of BaTiO3 particles in the composites is attributed to the poor interface bonding between the particles and the matrix. The tensile strength of the composite is 42% higher than that of the Al matrix, which indicates the possibility of obtaining high strength and high damping composites via interface improvement and the addition of high volume fraction of large grain BaTiO3 particles.
基金Supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20140813)Postdoctoral Science Foundation of China(Grant No.2012M511274)Introduction of Talents Scientific Research Foundation of Nanjing University of Aeronautics and Astronautics(Grant No.56YAH12034)
文摘An analytical methodology was developed to investigate the effect of fiber/matrix interface debonding on matrix multicracking evolution of fiber-reinforced CMCs(ceramic-matrix composites).The Budiansky-Hutchinson-Evans shear-lag model was adopted to analyse the micro-stress field of the damaged composites.The critical matrix strain energy criterion,which presupposes the existence of an ultimate or critical matrix strain energy with matrix,was obtained to simulate the matrix multicracking evolution of CMCs.With the increase of the applied stress,the matrix multicracking and fiber/matrix interface debonding occurred to dissipate the additional energy entered into the composites.The fiber/matrix interface debonded length under matrix multicracking evolution was obtained by treating the interface debonding as a particular crack propagation problem.The conditions for no-debonding and debonding during the evolution of matrix multicracking were discussed in terms of two interfacial properties,i.e.,the interface shear stress and interface debonded toughness.When the fiber/matrix interface was bonded,the matrix multicracking evolution was much more intense compared with the interface debonding;when the fiber/matrix interface was debonded,the matrix crack density increased with the increasing of interface shear stress and interface debonded energy.The theoretical results were compared with experimental data of unidirectional SiC/CAS(calcium alumina silicate),SiC/CAS-Ⅱand SiC/borosilicate composites.
文摘An interface crack analysis is presented for further understanding the characteristics of the crack-tip field. The conditions under which the energy release rate components would exist are emphasized and the relations between energy release rate components and the stress intensity factors are given. Combining with the results of chasical plate theory analysis. a closed-form solution for stress intensity factors in terms of external loading as well as some geometric and material parameters for fairly general composite laminates is derived Then. an analytical solution for energy release rate components is deduced. In order to get energy release rate components under general loading condition. a mode mix parameter, Ω, must be determined separately. A methodology for determining Ω is discussed. Finally. several different kinds of laminates are examined and the results obtained could be used in engineering applications.
文摘A macro-structure-toughened SiC particle reinforced LD2 aluminum alloy matrix (SiCp-LD2/LD2) composite was designed and fabricated based on considering the main factors which result in low room temperature fracture toughness of conventional metal matrix composites. Its room temperature fracture toughness was tested using three-point bending samples with sing1e edge notches. Compared with conventional SiCp/LD2 composites fabricated by stirring casting in case of same particle size and similar reinforcement volume fraction, this composite has a higher room temperature fracture toughness KQ. It shows strong resistance to crack propagating. The crack in it can propagate stably for a long time on the maximum load, therefore abrupt fracture occurring in most conventional composites can be avoided. Bending fractography (SEM) shows that the fracture mechanism of this material is different from SiCp/LD2 composite and the deformation of the unreinforced LD2 matrix and the SiCp-LD2/LD2 interface debonding are the main toughening mechanisms of this composite.
基金supported by the National Natural Science Foundation of China(Nos.11002026 and 11372039)Beijing Natural Science Foundation(No.3133039)the Scientific Research Foundation for the Returned(No.20121832001)
文摘The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.