期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Polymer-based TiO_(2)nanocomposite membrane:synthesis and organic pollutant removal
1
作者 Junyao Wu Shan Yi +2 位作者 Yixuan Wang Jun Yao Wei Gaoa 《International Journal of Smart and Nano Materials》 SCIE EI 2021年第2期129-145,共17页
Titanium dioxide(TiO_(2))nanoparticles are efficient photocatalysis for treating organic pollutants in water.Immobilizing TiO_(2)nanoparticles not only enables the reuse of nanoparticles but also prevents the harmful ... Titanium dioxide(TiO_(2))nanoparticles are efficient photocatalysis for treating organic pollutants in water.Immobilizing TiO_(2)nanoparticles not only enables the reuse of nanoparticles but also prevents the harmful impact of releasing nanoparticles into the aquatic environment.In this study,a porous composite microfiber membrane based on polyacrylonitrile(PAN)with TiO_(2)nanoparticles has been synthesized by electrospinning technique.The new membrane system has exhibited excellent adsorptive-photocatalytic property to degrade Methylene blue(MB).Using the nonlinear form of the pseudo-first-order,pseudo-second-order,Elovich,and Intra-particle diffusion models,the adsorption mechanism was analyzed.Coupling with adsorption and photocatalysis,the efficiency of this membrane system was illustrated via the multistage linear form of the pseudo-first-order kinetic;and the electrical energy per order(EEO)confirmed the lowest energy requirements to transfer selected pollutants.Combining the results of SEM,BET,FTIR,XRD and TGA,it revealed the relationship of microstructure,composition,and MB decomposition performance.The finding presents new knowledge for material design and evaluation of polymers/oxides membrane systems for remediating organic pollutants in water. 展开更多
关键词 ELECTROSPINNING porous composite microfiber membranes TiO_(2)nanoparticles ADSORPTION PHOTOCATALYSIS
原文传递
In situ polymerization of aniline in electrospun microfibers 被引量:1
2
作者 Xiao-Qiang Li Wan-Wan Liu +3 位作者 Shui-Ping Liu Meng-Juan Li Yong-Gui Li Ming-Qiao Ge 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第1期83-86,共4页
Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrosp... Conductive microfibers with an average diameter of ca. 1.0 μm were prepared by in situ polymerization of aniline, in which poly(vinylchloride-acrylonitrile) (PVC-AN) was used as the filament-material in electrospinning to form precursor microfibers and carry the aniline monomers. Fourier-transform infrared (FTIR) results demonstrated that PANi was successfully polymerized in the microfibers. The morphology of the PVC-AN-PANi microfibers was observed by scanning electron microscopy (SEM). Results of differential scanning calorimetry indicated that the polymer composite of PVC-AN-PANi formed via molecular interactions. Although the conductivity of PVC-AN-PANi microfibers was still limited (2.2 × 10^-8 S/cm), this method provided an effective and convenient approach for preparing highly uniform and soft microfibrous electrodes. 展开更多
关键词 Conductive microfibers Electrospinning Polymer composite Polyaniline
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部