Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material w...Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design.展开更多
Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made...Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.展开更多
In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In a...In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared.展开更多
A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of fie...A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.展开更多
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ...This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material.展开更多
Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal con...Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields.展开更多
The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,w...The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,while the adjacent space is characterized by a temperature that changes sinusoidally in time.The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM.The performances are evaluated in terms of dimensionless energy stored within the wall,comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement.展开更多
This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano com...This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano composite is based on polyolefin PE as a matrix, whereby paraffin wax and Kaolin were hot blended at varying concentrations. In addition Carbon Nanotube (CNTs) was added in different relative low concentrations to improve the thermal transition among the polymer matrix, since polymer domains are considered as isolator. The composite was prepared by melt mixing using a Brabender Plasrograph and a Two Role Mill. Thermal properties of the composite were determined using DSC and Melt flow Index. Because TES materials are subjected to melting and freezing during life time, multiple extrusion tests to simulate the degradation process of the composite were carried out. FTIR was applied to determine the degradation effect and investigate microstructure changes of the composite. The results obtained demonstrate that the blend shows a tendency to be thermally active at low temperatures. DSC tests evidenced a decrease in melt tempera-ture as a result of increasing Kaolin content and some changes in the latent heat of the compound.展开更多
The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by im...The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.展开更多
以两种固-液型相变材料共混所得的复合相变材料(CPCM)为芯层,以尼龙6(PA6)切片为皮层,采用自制的复合纺丝组件通过不同于传统的熔融纺丝法,得到PA6/CPCM储能调温初生纤维,将初生纤维在80℃下拉伸5倍,制得PA6/CPCM储能调温纤维,并对...以两种固-液型相变材料共混所得的复合相变材料(CPCM)为芯层,以尼龙6(PA6)切片为皮层,采用自制的复合纺丝组件通过不同于传统的熔融纺丝法,得到PA6/CPCM储能调温初生纤维,将初生纤维在80℃下拉伸5倍,制得PA6/CPCM储能调温纤维,并对其结构性能进行了表征。结果表明:PA6/CPCM初生纤维呈皮芯结构,直径约为95μm;所得纤维中CPCM质量分数约为32.9%,熔融相变温度为18.50~30.89℃,结晶相变温度为7.78~18.68℃,熔融焓、结晶焓分别为66.12,64.93 J/g;当CPCM注入量为8 m L/h时,PA6/CPCM储能调温纤维的线密度为15.57 dtex,断裂强度为2.76 c N/dtex,断裂伸长率为16.71%,该纤维可应用于冬季保暖外套中。展开更多
Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ide...Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.展开更多
Thermal energy storage (TES)has the potential to facilitate the deployment of renewable energy through addressing the demand-supply mismatch,ultimately leading to the decarbonisation of heat supply. Among the TES tech...Thermal energy storage (TES)has the potential to facilitate the deployment of renewable energy through addressing the demand-supply mismatch,ultimately leading to the decarbonisation of heat supply. Among the TES technologies,latent heat based TES with composite phase change materials (PCMs)has shown great potential,which has attracted significant attention in recent years.However,large scale and reliable manufacturing methods for composite PCMs are still largely lacking.Here,we present a study aimed to develop,for the first time,an extrusion process capable of fabricating high density polyethylene based graphite PCM composites at a high throughput and with enhanced thermal properties.The PCM composites were fabricated under different extrusion process parameters and characterized for their thermo-physical properties by multiple techniques including differential scanning calorimetry,thermal gravitational analyzer,and Fourier transform infrared spectroscopy.The results show that the extrusion process has the potential to fabricate PCM composite bars in a continuous fashion with a manufacturing throughput higher than traditional method;the fabricated PCM composites show enhanced properties (e.g.up to +70% increase in thermal diffusivity);and there is a clear link between extrusion process parameters and PCMs properties.Microstructural analyses show a more homogeneous structure with a lower extrusion speed;whereas a high extrusion speed gives a more microscopically heterogeneous structure with visible graphite agglomerates distributed relatively homogeneous macroscopically;and a higher graphite content gives a larger agglomerate size.The results of this work suggest that the elucidation of composition-process-property relationships is crucial:for a given formulation (composition), only through fine tuning of high throughput manufacturing process can make it possible to achieve the desired performance of the PCM composites.展开更多
基金This research was funded by the National Natural Science Foundation of China(51879166)the Open Fund of the State Key Laboratory of Frozen Soil Engineering of China(SKLFSE201909).
文摘Phase change materials(PCMs)can store large amounts of energy in latent heat and release it during phase changes,which could be used to improve the freeze-thaw performance of soil.The composite phase change material was prepared with paraffin as the PCM and 8%Class C fly ash(CFA)as the supporting material.Laboratory tests were conducted to reveal the influence of phase change paraffin composite Class C fly ash(CFA-PCM)on the thermal properties,volume changes and mechanical properties of expansive soil.The results show that PCM failed to establish a good improvement effect due to leakage.CFA can effectively adsorb phase change materials,and the two have good compatibility.CFA-PCM reduces the volume change and strength attenuation of the soil,and 8 wt.%PCM is the optimal content.CFA-PCM turns the phase change latent heat down of the soil and improves its thermal stability.CFA-PCM makes the impact small of freeze-thaw on soil pore structure damage and improves soil volume change and mechanical properties on a macroscopic scale.In addition,CFA-8 wt.%PCM treated expansive soil has apparent advantages in resisting repeated freeze-thaw cycles,providing a reference for actual engineering design.
文摘Paraffin wax is a perfect phase change material(PCM)that can be used in latent heat storage units(LHSUs).The utilization of such LHSU is restricted by the poor conductivity of PCM.In the present work,a metal foam made of aluminium with PCM was used to produce a composite PCM as a thermal conductivity technique in PCM⁃LHSU and water was used as heat transfer fluid(HTF).An experimental investigation was carried out to evaluate the heat transfer characteristics of LHSU using pure PCM and composite PCM.The study included time⁃dependent visualization of the PCM during the melting and solidification processes.Besides,a thermocouple network was placed inside the heat storage to record the temperature profile during each process.Results showed that better performance could be obtained using composite PCM⁃LHSU for both melting and solidification processes.The melting time of composite PCM⁃LHSU was about 83%faster than that of a simple PCM⁃LHSU,and the percentage decreasing in the solidification time was about 85%due to the provision of metal foam.
基金Fujian Province I mportant Science and Technology Development Fund,China (No.2005Z17)
文摘In this study,the sol-gel method was introduced to prepare the composite phase change material (CPCM). The CPCM was added to fabric with coating techniques and the thermal activity of modified fabric was studied. In addition,the thermal property and the microstructure of CPCM were also discussed in detail by means of polarization microscope and differential scanning calorimeter,respectively. According to the analysis of main influencial factors of the property of CPCM,the optimal preparing technique was determined. It was proved that CPCM could exhibit a good thermal property while phase transformation process took place,and a better appearance of the fabric modified with CPCM could be obtained due to the fact that in a warm circumstance,the liquid-state phase change material could be firmly enwrapped and embedded in the three-dimensional network all the time during the phase transformation. Besides,the fabric treated with CPCM had a high phase-transition enthalpy and an appropriate phase-transition temperature. As a result,a desirable temperature-adjustable function appeared.
基金Funded by Science and Technology Support Program of Hubei Province of China(No.2015BAA111)
文摘A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.
基金Funded by the National Natural Science Foundation of China(No.51308275)Natural Science Foundation of Liaoning Province(No.SY2016004)the Colleges and Universities Excellent Talents Supporting Plan Program of Liaoning Province(No.LJQ2015049)
文摘This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material.
基金supported by the Natural Science Foundation of Guangdong province(2022A1515010161)the Guangdong Basic and Applied Basic Research Foundation(2021B1515130008)the National Natural Science Foundation of China(51977062).
文摘Phase change materials have attracted significant attention owing to their promising applications in many aspects.However,it is seriously restricted by some drawbacks such as obvious leakage,relatively low thermal conductivity,and easily flame properties.Herein,a novel flame retardant form-stable composite phase change material(CPCM)with polyethylene glycol/epoxy resin/expanded graphite/magnesium hydroxide/zinc hydroxide(PEG/ER/EG/MH/ZH)has been successfully prepared and utilized in the battery module.The addition of MH and ZH(MH:ZH=1:2)as flame retardant additions can not only greatly improve the flame retardant effect but also maintain the physical and mechanical properties of the polymer.Further,the EG(5%)can provide the graphitization degree of residual char which is beneficial to building a more protective barrier.This designation of CPCM can exhibit leakage-proof,high thermal conductivity(increasing 400%-500%)and prominent flammable retardant performance.Especially at 3C discharge rate,the maximum temperature is controlled below 54.2℃and the temperature difference is maintained within 2.2℃in the battery module,which presents a superior thermal management effect.This work suggests an efficient and feasible approach toward exploiting a multifunctional phase change material for thermal management systems for electric vehicles and energy storage fields.
文摘The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material(PCM).The wall separates two environments with different thermal properties.The first one is conditioned,while the adjacent space is characterized by a temperature that changes sinusoidally in time.The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM.The performances are evaluated in terms of dimensionless energy stored within the wall,comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement.
文摘This study investigates the thermal behavior of Polyolefin containing Paraffin and Nano Hydrated aluminum silicate Al2Si2O5 (OH) 4 (Kaolin) particles to enhance store energy at ambient temperature. The hybrid Nano composite is based on polyolefin PE as a matrix, whereby paraffin wax and Kaolin were hot blended at varying concentrations. In addition Carbon Nanotube (CNTs) was added in different relative low concentrations to improve the thermal transition among the polymer matrix, since polymer domains are considered as isolator. The composite was prepared by melt mixing using a Brabender Plasrograph and a Two Role Mill. Thermal properties of the composite were determined using DSC and Melt flow Index. Because TES materials are subjected to melting and freezing during life time, multiple extrusion tests to simulate the degradation process of the composite were carried out. FTIR was applied to determine the degradation effect and investigate microstructure changes of the composite. The results obtained demonstrate that the blend shows a tendency to be thermally active at low temperatures. DSC tests evidenced a decrease in melt tempera-ture as a result of increasing Kaolin content and some changes in the latent heat of the compound.
基金The National Natural Science Foundation of China(No.52122802,52078126)Jiangsu Provincial Department of Science and Technology Innovation Support Program(No.BK20222004,BZ2022036).
文摘The novel calcium-silicate-hydrate(C-S-H)/paraffin composite phase change materials were synthesized using a discontinuous two-step nucleation method.Initially,the C-S-H precursor is separated and dried,followed by immersion in an aqueous environment to transform it into C-S-H.This two-step nucleation approach results in C-S-H with a specific surface area of 497.2 m^(2)/g,achieved by preventing C-S-H foil overlapping and refining its pore structure.When impregnated with paraffin,the novel C-S-H/paraffin composite exhibits superior thermal properties,such as a higher potential heat value of 148.3 J/g and an encapsulation efficiency of 81.6%,outperforming conventional C-S-H.Moreover,the composite material demonstrates excellent cyclic performance,indicating its potential for building thermal storage compared to other paraffin-based composites.Compared with the conventional method,this simple technology,which only adds conversion and centrifugation steps,does not negatively impact preparation costs,the environment,and resource consumption.This study provides valuable theoretical insights for designing thermal storage concrete materials and advancing building heat management.
文摘以两种固-液型相变材料共混所得的复合相变材料(CPCM)为芯层,以尼龙6(PA6)切片为皮层,采用自制的复合纺丝组件通过不同于传统的熔融纺丝法,得到PA6/CPCM储能调温初生纤维,将初生纤维在80℃下拉伸5倍,制得PA6/CPCM储能调温纤维,并对其结构性能进行了表征。结果表明:PA6/CPCM初生纤维呈皮芯结构,直径约为95μm;所得纤维中CPCM质量分数约为32.9%,熔融相变温度为18.50~30.89℃,结晶相变温度为7.78~18.68℃,熔融焓、结晶焓分别为66.12,64.93 J/g;当CPCM注入量为8 m L/h时,PA6/CPCM储能调温纤维的线密度为15.57 dtex,断裂强度为2.76 c N/dtex,断裂伸长率为16.71%,该纤维可应用于冬季保暖外套中。
文摘Electronic devices generate heat during operation and require efficient thermal management to extend the lifetime and prevent performance degradation.Featured by its exceptional thermal conductivity,graphene is an ideal functional filler for fabricating thermally conductive polymer composites to provide efficient thermal management.Extensive studies have been focusing on constructing graphene networks in polymer composites to achieve high thermal conductivities.Compared with conventional composite fabrications by directly mixing graphene with polymers,preconstruction of three-dimensional graphene networks followed by backfilling polymers represents a promising way to produce composites with higher performances,enabling high manufacturing flexibility and controllability.In this review,we first summarize the factors that affect thermal conductivity of graphene composites and strategies for fabricating highly thermally conductive graphene/polymer composites.Subsequently,we give the reasoning behind using preconstructed three-dimensional graphene networks for fabricating thermally conductive polymer composites and highlight their potential applications.Finally,our insight into the existing bottlenecks and opportunities is provided for developing preconstructed porous architectures of graphene and their thermally conductive composites.
文摘Thermal energy storage (TES)has the potential to facilitate the deployment of renewable energy through addressing the demand-supply mismatch,ultimately leading to the decarbonisation of heat supply. Among the TES technologies,latent heat based TES with composite phase change materials (PCMs)has shown great potential,which has attracted significant attention in recent years.However,large scale and reliable manufacturing methods for composite PCMs are still largely lacking.Here,we present a study aimed to develop,for the first time,an extrusion process capable of fabricating high density polyethylene based graphite PCM composites at a high throughput and with enhanced thermal properties.The PCM composites were fabricated under different extrusion process parameters and characterized for their thermo-physical properties by multiple techniques including differential scanning calorimetry,thermal gravitational analyzer,and Fourier transform infrared spectroscopy.The results show that the extrusion process has the potential to fabricate PCM composite bars in a continuous fashion with a manufacturing throughput higher than traditional method;the fabricated PCM composites show enhanced properties (e.g.up to +70% increase in thermal diffusivity);and there is a clear link between extrusion process parameters and PCMs properties.Microstructural analyses show a more homogeneous structure with a lower extrusion speed;whereas a high extrusion speed gives a more microscopically heterogeneous structure with visible graphite agglomerates distributed relatively homogeneous macroscopically;and a higher graphite content gives a larger agglomerate size.The results of this work suggest that the elucidation of composition-process-property relationships is crucial:for a given formulation (composition), only through fine tuning of high throughput manufacturing process can make it possible to achieve the desired performance of the PCM composites.