With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an e...With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface.展开更多
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t...Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).L...The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g.展开更多
PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivit...PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.展开更多
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical...Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage.展开更多
To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most diffe...To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.展开更多
A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (eth...A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V.展开更多
Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteri...Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteries(ASSLMBs).In this study,a novel poly(m-phenylene isophthalamide)(PMIA)-core/poly(ethylene oxide)(PEO)-shell nanofiber membrane and the functional Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)ceramic nanopar-ticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes(CPEs).The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs,while the shell PEO layer can provide the 3D continuous transport channels for lithium ions.In addition,the introduction of functional LLZTO nanoparticle not only reduces the crys-tallinity of PEO,but also promotes the dissociation of lithium salts and releases more Li^(+)ions through its interaction with the Lewis acid-base of anions,thereby overall improving the transport of lithium ions.Consequently,the optimized CPEs present high ionic conductivity of 1.38×10^(−4)S/cm at 30℃,signifi-cantly improved mechanical strength(8.5 MPa),remarkable thermal stability(without obvious shrinkage at 150℃),and conspicuous Li dendrites blocking ability(>1800 h).The CPEs also both have good com-patibility and cyclic stability with LiFePO_(4)(>2000 cycles)and high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)(>500 cycles)cathodes.In addition,even at low temperature(40℃),the assembled LiFePO4/CPEs/Li bat-tery still can cycle stably.The novel design can provide an effective way to exploit high-performance solid-state electrolytes.展开更多
Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanica...Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanical properties of matrix materials with different mass ratio of resin and stabilizer(MRRS)were investigated systematically.The influences of MRRS on interface bonding strength of Mo fiber-matrix,wettability and mechanical strength of GPC were discussed,respectively,and the theoretical calculation result of MRRS k was obtained,with the optimal value of k=4.When k=4,tensile strength,tensile strain and fracture stress of the cured resin achieve the maximum values.But for k=7,the corresponding values reach the minimum.With the increase of MRRS k,surface free energy of the cured resin first increases and then decreases,while contact angles between Mo sample and matrix have displayed the opposite trend.Wettability of resin to Mo fiber is the best at k=4.Pulling load of Mo fiber and interface bonding strength appear the maximum at k=4,followed by k=5,k=3 the third,and k=7 the minimum.When k=4,mechanical properties of Mo fiber-reinforced GPC are optimal,which is consistent with the result of theoretical calculation.This study is of great significance to get better component formulas of Mo fiber reinforced GPC and to improve its application in machine tools.展开更多
Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-pow...Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-power and low-cost space applications.In this study,a shape-memory polymer composite(SMPC)boom was designed,fabricated,and characterized for flexible reel-type solar arrays.The SMPC boom was fabricated from a smart material,a shape-memory polymer composite,whose mechanical properties were tested.Additionally,a mathematical model of the bending stiffness of the SMPC boom was developed,and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software.An SMPC boom was fabricated to demonstrate its shape memory characteristics,and the driving force of the booms with varying geometric parameters was investigated.We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability.The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays.展开更多
This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-stati...This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-static cyclic compression. Utilizing in-house MWCNT-engineered PPR filament feedstocks, both bulk and cellular composites were realized. The morphological features of nanocomposites were examined via scanning electron microscopy, which reveals that MWCNTs are uniformly dispersed. The uniformly dispersed MWCNTs forms an electrically conductive network within the PPR matrix, and the resulting nanocomposite shows good electrical conductivity(~10^(-1)S/cm), improved mechanical performance(modulus increases by 125% and compressive strength increases by 25% for 8 wt% MWCNT loading) and pronounced piezoresistive response(gauge factor of 27.9-8.5 for bulk samples)under compression. The influence of strain rate on the piezoresistive response of bulk samples(4 wt% of MWCNT) under compression was also measured. Under repeated cyclic compression(2% constant strain amplitude), the nanocomposite exhibited stable piezoresistive performance up to 100 cycles. The piezoresistive response under repeated cyclic loading with increasing strain amplitude of was also assessed.The gauge factor of BCC and FCC cellular composites(4 wt% of MWCNT) with a relative density of 30%was observed to be 46.4 and 30.2 respectively, under compression. The higher sensitivity of the BCC plate-lattice could be attributed to its higher degree of stretching-dominated deformation behavior than the FCC plate-lattice, which exhibits bending-dominated behavior. The 3D printed cellular PPR/MWCNT composites structures were found to show excellent piezoresistive self-sensing characteristics and open new avenues for in situ structural health monitoring in various applications.展开更多
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ...Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.展开更多
Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here ...Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics.展开更多
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ...In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy.展开更多
The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes a...The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes and the mathematical model of oscillations of the axis of the composite roller during the application of the polymer composition along the lines of tarpaulin materials are presented. Based on the numerical solution of the problem, the regularities of roller oscillations are presented. The main parameters of the system are substantiated.展开更多
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim...Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues.展开更多
Solid-state lithium batteries(SSLBs)have been identified as one kind of the most promising energy conversion and storage devices because of their safety,high energy density,and long cycling life.The development of sol...Solid-state lithium batteries(SSLBs)have been identified as one kind of the most promising energy conversion and storage devices because of their safety,high energy density,and long cycling life.The development of solid-state electrolyte is vital to commercialize SSLBs.Composite polymer electrolyte(CPE),derived by compositing inorganic particles into solid polymer electrolyte has become the most practical species for SSLBs because it inherits the advantages of polymer electrolyte and simultaneously achieves enhanced ionic conductivity and mechanical properties.The characteristics of inorganic particles and their interaction with polymers strongly impact the performance of CPE,improving its ionic conductivity,mechanical properties,thermal and electrochemical stability,as well as interface compatibility with both electrodes.In this review,the effects of particle characteristics including its species,size,proportion,morphology on the ionic conductivity and mechanical properties of CPE are reviewed.Meanwhile,some novel composite strategies are also introduced including surface modification,hybridization,and alignment of particles in polymer matrices,as well as some new preparation methods of CPE.The interactions between particles and other components in CPE including polymer matrices or lithium salt are particularly focused herein to reveal the lithium conductive mechanism.Finally,a perspective on the direction of future CPE development for SSLBs is presented.展开更多
Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic ...Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic solid electrolytes(ISE)nor solid polymer electrolytes(SPE)alone can meet the operating requirements for room-temperature(RT)all-solid-state lithium metal batteries(ASSLMB).Here,we report a three-dimensional(3D)nanofiber framework reinforced polyethylene oxide(PEO)-based composite polymer electrolytes(CPE)through con-structing a nanofiber framework combining polyacryloni-trile(PAN)and fast Li-ion conductor Li_(0.33)La_(0.557)TiO_(3)(LLTO)framework by electrospinning method.Mean-while,the PEO electrolyte filled in the pores of the PAN/LLTO nanofiber framework can effectively isolate the direct contact between the chemically active Ti^(4+)in LLTO with lithium metal,thereby avoiding the occurrence of interfacial reactions.Enhanced electrochemical stability makes a wide electrochemical window up to 4.8 V with an ionic conductivity of about 9.87×10^(-5)S·cm^(-1)at RT.Benefiting from the excellent lithium dendrite growth inhibition ability of 3D PAN/LLTO nanofiber framework,especially when the mass of LLTO reaches twice that of the PAN,Li/Li symmetric cell could cycle stably for 1000 h without a short circuit.In addition,under 30℃,the LiFePO_(4)/Li ASSLMB using such CPE delivers large capacities of 156.2 and 140 mAh·g^(-1)at 0.2C and 0.5C,respectively.These results provide a new insight for the development of the next generation of safe,high-perfor-mance ASSLMBs.展开更多
Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3...Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.展开更多
基金the funding support from the National Key Research and Development Program of China(Grant Number 2021YFB2400300)National Natural Science Foundation of China(Grant Number 21875195,22021001)Fundamental Research Funds for the Central Universities(Grant Number 20720190040)。
文摘With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface.
基金This work was supported by the National Natural Science Foundation of China (51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金the Special Grade of the Financial Support from the China Postdoctoral Science Foundation (2020T130469)the Sci-ence and Technology Plans of Tianjin (19PTSYJC00010)the Science&Technol-ogy Development Fund of Tianjin Education Commission for Higher Education (2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
基金supported by the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)the National Natural Science Foundation of China(Nos.21878216,22005215)+1 种基金Hebei Province Innovation Ability Promotion Project(No.20312201D)the National Key Research and Development Program of China(No.2019YFE0118800)。
文摘The lithiated covalent organic framework(named TpPa-SO_(3) Li),which was prepared by a mild chemical lithiation strategy,was introduced in poly(ethylene oxide)(PEO)to produce the composite polymer electrolytes(CPEs).Li-ion can transfer along the PEO chain or across the layer of TpPa-SO_(3) Li within the nanochannels,resulting in a high Li-ion conductivity of3.01×10^(-4)S/cm at 60℃.When the CPE with 0.75 wt.%TpPa-SO_(3) Li was used in the LiFePO_(4)‖Li solid-state battery,the cell delivered a stable capacity of 125 mA·h/g after 250 cycles at 0.5 C,60℃.In comparison,the cell using the CPE without TpPa-SO_(3) Li exhibited a capacity of only 118 mA·h/g.
文摘PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10、5 Scm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.
基金Project(2011FJ1005)supported by the Major Provincial Science and Technology Program of Hunan Province,ChinaProject(2010qzzd0101)supported by the Central College on the 2010 Operational Costs of Basic Research Program,China
文摘Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage.
文摘To analyze the feasibility of application of composite material as the insulating material, it is necessary to have knowledge of some of its mechanical properties. An insulating material may suffer from the most different efforts, but the major applications suggest mechanical bending and compression tests because the insulation can be applied on roofs of homes, liners similar to, in the form of plates. Thus, the product is continually flexed. When the material is used on a floor, it suffers constant compressions over its use. For tests performed in this study, we used the ASTM D695-96 for compression, an example of literature. Using such a standard test, specimens were produced for compression test, with specimens made of cylindrical shapes, respecting the condition that the height of the specimen corresponds to twice the diameter of the base. Polyurethane castor without charge vermiculite and mass loads of 10%, 15% and 20% matrix: four specimens for each type of material were produced. The composites were tested in a universal testing machine at a speed of 2 mm/s. The results are average values of four test samples, and initially show the behavior of castor oil polyurethane during the compression test, which is detailed in the stress versus strain curve. The achieved results are promising, and detailed in this paper.
文摘A novel composite polymer electrolyte was prepared by blending an appropriateamount of LiClO_4 and 10 percent (mass fraction) fumed SiO_2 with the block copolymer of poly(ethylene oxide) (PEO) synthesized by poly (ethylene glycol) (PEG) 400 and CH_2C1_2 The ionicconductivity, electrochemical stability, interfacial characteristic and thermal behavior of thecomposite polymer electrolyte were studied by the measurements of AC impedance spectroscopy, linearsweep voltammetry and differential scanning calorimetry (DSC), respectively. The glass transitiontemperature acts as a function of salt concentration, which increases with the LiClO_4 content.Lewis acid-base model interaction mechanism was introduced to interpret the interactive relationbetween the filled fumed SiO_2 and the lithium salt in the composite polymer electrolyte. Over thesalt concentration range and the measured temperature, the maximum ionic conductivity of thecomposite polymer electrolyte (10^(-4.41) S/cm) appeared at EO/Li=25 (mole ratio) and 30 deg C, andthe beginning oxidative degradation potential versus Li beyond 5 V.
基金supported by the National Natural Science Foundation of China (Nos.52203066,51973157,61904123)the Tianjin Natural Science Foundation (No.18JCQNJC02900)+3 种基金National Innovation and Entrepreneurship Training Program for College students (No.202310058007)Tianjin Municipal College Students’ Innovation and Entrepreneurship Training Program (No.202310058088)Science & Technology Development Fund of Tianjin Education Commission for Higher Education (No.2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University
文摘Satisfactory ionic conductivity,excellent mechanical stability,and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes(SPEs)in all-solid-state lithium metal batteries(ASSLMBs).In this study,a novel poly(m-phenylene isophthalamide)(PMIA)-core/poly(ethylene oxide)(PEO)-shell nanofiber membrane and the functional Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)ceramic nanopar-ticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes(CPEs).The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs,while the shell PEO layer can provide the 3D continuous transport channels for lithium ions.In addition,the introduction of functional LLZTO nanoparticle not only reduces the crys-tallinity of PEO,but also promotes the dissociation of lithium salts and releases more Li^(+)ions through its interaction with the Lewis acid-base of anions,thereby overall improving the transport of lithium ions.Consequently,the optimized CPEs present high ionic conductivity of 1.38×10^(−4)S/cm at 30℃,signifi-cantly improved mechanical strength(8.5 MPa),remarkable thermal stability(without obvious shrinkage at 150℃),and conspicuous Li dendrites blocking ability(>1800 h).The CPEs also both have good com-patibility and cyclic stability with LiFePO_(4)(>2000 cycles)and high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)(>500 cycles)cathodes.In addition,even at low temperature(40℃),the assembled LiFePO4/CPEs/Li bat-tery still can cycle stably.The novel design can provide an effective way to exploit high-performance solid-state electrolytes.
基金Fouded by the National Natural Science Foundation of China(No.51175308)the National Science and Technology Major Project of China(No.2012ZX04010032)。
文摘Because inferior mechanical strength of granite polymer composite(GPC)has become the main drawback limiting its application and popularization,Mo fibers were added into(GPC)to improve its mechanical strength.Mechanical properties of matrix materials with different mass ratio of resin and stabilizer(MRRS)were investigated systematically.The influences of MRRS on interface bonding strength of Mo fiber-matrix,wettability and mechanical strength of GPC were discussed,respectively,and the theoretical calculation result of MRRS k was obtained,with the optimal value of k=4.When k=4,tensile strength,tensile strain and fracture stress of the cured resin achieve the maximum values.But for k=7,the corresponding values reach the minimum.With the increase of MRRS k,surface free energy of the cured resin first increases and then decreases,while contact angles between Mo sample and matrix have displayed the opposite trend.Wettability of resin to Mo fiber is the best at k=4.Pulling load of Mo fiber and interface bonding strength appear the maximum at k=4,followed by k=5,k=3 the third,and k=7 the minimum.When k=4,mechanical properties of Mo fiber-reinforced GPC are optimal,which is consistent with the result of theoretical calculation.This study is of great significance to get better component formulas of Mo fiber reinforced GPC and to improve its application in machine tools.
基金Supported by National Natural Science Foundation of China(Grant Nos.52105013 and 51835002)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)of China(Grant No.SKLRS202202C)China Postdoctoral Science Foundation(Grant No.2020M681087).
文摘Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-power and low-cost space applications.In this study,a shape-memory polymer composite(SMPC)boom was designed,fabricated,and characterized for flexible reel-type solar arrays.The SMPC boom was fabricated from a smart material,a shape-memory polymer composite,whose mechanical properties were tested.Additionally,a mathematical model of the bending stiffness of the SMPC boom was developed,and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software.An SMPC boom was fabricated to demonstrate its shape memory characteristics,and the driving force of the booms with varying geometric parameters was investigated.We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability.The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays.
基金financial support from the Abu Dhabi National Oil Company (ADNOC), United Arab Emirates under Award No: EX2016-000010。
文摘This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-static cyclic compression. Utilizing in-house MWCNT-engineered PPR filament feedstocks, both bulk and cellular composites were realized. The morphological features of nanocomposites were examined via scanning electron microscopy, which reveals that MWCNTs are uniformly dispersed. The uniformly dispersed MWCNTs forms an electrically conductive network within the PPR matrix, and the resulting nanocomposite shows good electrical conductivity(~10^(-1)S/cm), improved mechanical performance(modulus increases by 125% and compressive strength increases by 25% for 8 wt% MWCNT loading) and pronounced piezoresistive response(gauge factor of 27.9-8.5 for bulk samples)under compression. The influence of strain rate on the piezoresistive response of bulk samples(4 wt% of MWCNT) under compression was also measured. Under repeated cyclic compression(2% constant strain amplitude), the nanocomposite exhibited stable piezoresistive performance up to 100 cycles. The piezoresistive response under repeated cyclic loading with increasing strain amplitude of was also assessed.The gauge factor of BCC and FCC cellular composites(4 wt% of MWCNT) with a relative density of 30%was observed to be 46.4 and 30.2 respectively, under compression. The higher sensitivity of the BCC plate-lattice could be attributed to its higher degree of stretching-dominated deformation behavior than the FCC plate-lattice, which exhibits bending-dominated behavior. The 3D printed cellular PPR/MWCNT composites structures were found to show excellent piezoresistive self-sensing characteristics and open new avenues for in situ structural health monitoring in various applications.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A2C1008380)Nano Material Technology Development Program[NRF-2015M3A7B6027970]+1 种基金the Chey Institute for Advanced Studies'International Scholar Exchange Fellowship for the academic year of 2021-2022supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20215710100170).
文摘Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected.
基金supported financially by the Science and Technology Cooperation and Exchange Special Project of Shanxi Province(Grant No.202204041101006)the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123013,202203021222077,and 202203021222069)the Shanxi Scholarship Council of China(Grant No.2023-130).
文摘Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics.
基金the Basic Science Research Program through the National Research Foundation(NRF)of Korea funded by the Ministry of Education,Science,and Technology(No.2022R1A2C1004437)the Ministry of Science and ICT(MSIT)of Korea Government(No.2022M3J7A1062940)。
文摘In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy.
文摘The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes and the mathematical model of oscillations of the axis of the composite roller during the application of the polymer composition along the lines of tarpaulin materials are presented. Based on the numerical solution of the problem, the regularities of roller oscillations are presented. The main parameters of the system are substantiated.
基金supported by the KIST Institutional Program (Project No.2E32501-23-106)the KU-KIST Graduate School of Converging Science and Technology Program+3 种基金the National Research Foundation of Korea (NRF) grant funded by the Korean government (the Ministry of Science, ICT, MSIT) (RS-2022-00165524)the development of technologies for electroceuticals of the National Research Foundataion (NRF) funded by the Korean government (MSIT) (RS-2023-00220534)the Ministry of Science and ICT (MSIT), Korea, under the ICT Creative Consilience program (IITP-2023-2020-0-01819) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation)Start up Pioneering in Research and Innovation(SPRINT) through the Commercialization Promotion Agency for R&D Outcomes(COMPA) grant funded by the Korea government(Ministry of Science and ICT) (1711198921)
文摘Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2018YFB0104300)the Beijing Municipal Natural Science Foundation(Grant No.2202027)the China Scholarship Council(No.202006460047).
文摘Solid-state lithium batteries(SSLBs)have been identified as one kind of the most promising energy conversion and storage devices because of their safety,high energy density,and long cycling life.The development of solid-state electrolyte is vital to commercialize SSLBs.Composite polymer electrolyte(CPE),derived by compositing inorganic particles into solid polymer electrolyte has become the most practical species for SSLBs because it inherits the advantages of polymer electrolyte and simultaneously achieves enhanced ionic conductivity and mechanical properties.The characteristics of inorganic particles and their interaction with polymers strongly impact the performance of CPE,improving its ionic conductivity,mechanical properties,thermal and electrochemical stability,as well as interface compatibility with both electrodes.In this review,the effects of particle characteristics including its species,size,proportion,morphology on the ionic conductivity and mechanical properties of CPE are reviewed.Meanwhile,some novel composite strategies are also introduced including surface modification,hybridization,and alignment of particles in polymer matrices,as well as some new preparation methods of CPE.The interactions between particles and other components in CPE including polymer matrices or lithium salt are particularly focused herein to reveal the lithium conductive mechanism.Finally,a perspective on the direction of future CPE development for SSLBs is presented.
基金financially supported by Zhejiang Provincial Natural Science Foundation of China (No. LR20E020002)the National Natural Science Foundation of China (Nos.U20A20253 and 21972127)
文摘Substituting liquid electrolytes with solid elec-trolytes is considered as an important strategy to solve the problem of flammability and explosion for traditional lithium-ion batteries(LIB).However,neither inorganic solid electrolytes(ISE)nor solid polymer electrolytes(SPE)alone can meet the operating requirements for room-temperature(RT)all-solid-state lithium metal batteries(ASSLMB).Here,we report a three-dimensional(3D)nanofiber framework reinforced polyethylene oxide(PEO)-based composite polymer electrolytes(CPE)through con-structing a nanofiber framework combining polyacryloni-trile(PAN)and fast Li-ion conductor Li_(0.33)La_(0.557)TiO_(3)(LLTO)framework by electrospinning method.Mean-while,the PEO electrolyte filled in the pores of the PAN/LLTO nanofiber framework can effectively isolate the direct contact between the chemically active Ti^(4+)in LLTO with lithium metal,thereby avoiding the occurrence of interfacial reactions.Enhanced electrochemical stability makes a wide electrochemical window up to 4.8 V with an ionic conductivity of about 9.87×10^(-5)S·cm^(-1)at RT.Benefiting from the excellent lithium dendrite growth inhibition ability of 3D PAN/LLTO nanofiber framework,especially when the mass of LLTO reaches twice that of the PAN,Li/Li symmetric cell could cycle stably for 1000 h without a short circuit.In addition,under 30℃,the LiFePO_(4)/Li ASSLMB using such CPE delivers large capacities of 156.2 and 140 mAh·g^(-1)at 0.2C and 0.5C,respectively.These results provide a new insight for the development of the next generation of safe,high-perfor-mance ASSLMBs.
基金Project supported by Major Provincial Science and Technology Programs of Hunan (2011FJ1005)Central College on the 2010 Operational Costs of Basic Research Project (2010QZZD0101)
文摘Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.