A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically...A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.展开更多
A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The...A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The LH and RH frequency bands are then identified by the real parts of the Bloch impedance and the phase delay of the unit cells. The new approach has some advantages over the LC parameters extraction method introduced by Caloz et a1.(2004). Based on the new approach, a novel resonator is designed using CRLH TLs. The simulation and experimental results accorded well with the theoretical analysis. The novel resonator may have potential applications in filters with high harmonic suppression and compact structures,展开更多
A tunable dual-broad-band branch-line coupler (BLC) utilizing composite right/left-handed (CRLH) transmission lines is presented. Two λ/4 segments consisting of CRLH transmission lines are added to each port to broad...A tunable dual-broad-band branch-line coupler (BLC) utilizing composite right/left-handed (CRLH) transmission lines is presented. Two λ/4 segments consisting of CRLH transmission lines are added to each port to broaden the dual bands of the branch-line coupler. Numerical simulation and optimal design of the novel coupler are presented. The dual bands of the novel coupler are tunable and broad. The 1-dB bandwidth of each pass band is more than 16% of the central frequency.展开更多
In this paper,novel dual-band (DB) branch-line couplers (BLCs) employing a composite right/left handed transmission line (CRLH TL) and fractal geometry are presented for the first time.The CRLH TL,with specified chara...In this paper,novel dual-band (DB) branch-line couplers (BLCs) employing a composite right/left handed transmission line (CRLH TL) and fractal geometry are presented for the first time.The CRLH TL,with specified characteristic impedance and phase shift,consists of lumped elements for the left handed (LH) part and fractal-shaped microstrip lines (MLs) for the right handed (RH) part,which can be designed separately.Two designed BLCs are involved in size reduction,one using a 3/2 fractal curve of first iteration,the other constructed based on a hybrid shape of fractal and meandered lines.A miniaturized principle for CRLH TL realization is derived and an exact design method for fractal implementation is developed.For verification,an example coupler was fabricated and measured.Consistent numerical and experimental results confirmed the design concept,showing that the BLCs obtain DB behavior centered at 0.9 GHz and 1.8 GHz respectively with good in-band performance,except for slightly larger coupled insertion loss for the hybrid-shaped BLC case.In addition,the proposed fractal-and hybrid-shaped BLCs obtained a 49.7% and 64.1% size reduction respectively relative to their conventional counterparts working in the lower band.The most important contributions of this article are the demonstration of compatibility between the fractal and CRLH TL techniques and the provision of an alternative approach and a new concept for designing devices.展开更多
A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The c...A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The characterization is performed by theory analysis,circuit simulation,and full-wave electromagnetic (EM) simulation.The negative refractive index (NRI) and backward wave propagation performance of the CRLH TL are demonstrated.For application,a bandpass filter (BPF) with enhanced out-of-band selectivity and harmonic suppression operating at the wireless local area network (WLAN) band is designed,fabricated,and measured by combining the CRLH TL with a complementary electric inductive-capacitive resonator (CELC).Three CELC cells with wideband stopband performance in the conductor strip and ground plane,respectively,are utilized in terms of single negative permeability.The design concept has been verified by the measurement data.展开更多
Broadband phase shifters are mostly proposed and fabricated based on the scheme proposed by Shiffman, which uses a coupled line with far ends connected together and a uniform transmission line to give a differential p...Broadband phase shifters are mostly proposed and fabricated based on the scheme proposed by Shiffman, which uses a coupled line with far ends connected together and a uniform transmission line to give a differential phase shift. Based on the unique dispersion property of the composite right/left-handed (CRLH) metamaterial structure, a new configuration is presented in this paper for fabricating the broadband differential phase shifter, which employs a novel CRLH metamaterial structure as one of the differential phase-shift arms, instead of the conventional coupled line. The new circuit can achieve a phase shift of 90° in an operational bandwidth as broad as one octave and its phase deviations are quite small. An original design of the novel broadband phase shifter is presented, in which the artificial CRLH structure was implemented by microstrip quasi-lumped elements. Both the simulated and measured results of the 90° broadband differential phase shifter are presented.展开更多
This paper proposes a tunable zeroth-order resonator on a composite right/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. Based on t...This paper proposes a tunable zeroth-order resonator on a composite right/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. Based on the propagation theory of edge guided modes, the analysis procedure of this structure is introduced. The numerical results demonstrate the tunability of the resonant frequency by changing the DC bias magnetic field applied to the ferrite. In contrast to previous work, the proposed structure is easy to design and fabricate and does not require a chip component.展开更多
A compact multiband patch antenna is designed by using HFSS in this work, which is filled with composite right/left-handed transmission line (CRLH-TL) structures. The simulated results reveal that the operating freq...A compact multiband patch antenna is designed by using HFSS in this work, which is filled with composite right/left-handed transmission line (CRLH-TL) structures. The simulated results reveal that the operating frequency becomes lower with left-handed (LH) characteristics of the CRLH-TL structures enhanced, which enable antenna physical size reduction to a large extent. The proposed antenna is fabricated on the substrate Rogers R03201 (relative permittivity of 10.2), which has a compact size of 12 mm×12 mm × 4 mm. Moreover, this antenna exhibits monopole-like radiation pattern at one resonance frequency and patch-like radiation at the other four resonant frequencies. Therefore, the designed antenna is useful for communication systems.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 60577023 and 60378037), the National Basic Research Program (973) of China (No. 2004CB719802), China Postdoctoral Science Foundation, and Education Ministry Key Laboratory of Photoelectric Information Technology Science Foundation (No. 2005-20), China
文摘A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719800) and the National Natural Science Foundation of China (Nos. 60271027 and 60501018)
文摘A new approach was introduced to analyze composite right/left-handed transmission lines (CRLH TLs). The Bloch impedance and the dispersion relations are directly obtained from the S parameters of the unit cells. The LH and RH frequency bands are then identified by the real parts of the Bloch impedance and the phase delay of the unit cells. The new approach has some advantages over the LC parameters extraction method introduced by Caloz et a1.(2004). Based on the new approach, a novel resonator is designed using CRLH TLs. The simulation and experimental results accorded well with the theoretical analysis. The novel resonator may have potential applications in filters with high harmonic suppression and compact structures,
基金Project (No. 2004CB719802) supported by the National Basic Re-search Program (973) of China
文摘A tunable dual-broad-band branch-line coupler (BLC) utilizing composite right/left-handed (CRLH) transmission lines is presented. Two λ/4 segments consisting of CRLH transmission lines are added to each port to broaden the dual bands of the branch-line coupler. Numerical simulation and optimal design of the novel coupler are presented. The dual bands of the novel coupler are tunable and broad. The 1-dB bandwidth of each pass band is more than 16% of the central frequency.
基金supported by the National Natural Science Foundation of China(Nos.60871027and 60971118)the National Basic Research Program(973) of China(No.2009CB613306)
文摘In this paper,novel dual-band (DB) branch-line couplers (BLCs) employing a composite right/left handed transmission line (CRLH TL) and fractal geometry are presented for the first time.The CRLH TL,with specified characteristic impedance and phase shift,consists of lumped elements for the left handed (LH) part and fractal-shaped microstrip lines (MLs) for the right handed (RH) part,which can be designed separately.Two designed BLCs are involved in size reduction,one using a 3/2 fractal curve of first iteration,the other constructed based on a hybrid shape of fractal and meandered lines.A miniaturized principle for CRLH TL realization is derived and an exact design method for fractal implementation is developed.For verification,an example coupler was fabricated and measured.Consistent numerical and experimental results confirmed the design concept,showing that the BLCs obtain DB behavior centered at 0.9 GHz and 1.8 GHz respectively with good in-band performance,except for slightly larger coupled insertion loss for the hybrid-shaped BLC case.In addition,the proposed fractal-and hybrid-shaped BLCs obtained a 49.7% and 64.1% size reduction respectively relative to their conventional counterparts working in the lower band.The most important contributions of this article are the demonstration of compatibility between the fractal and CRLH TL techniques and the provision of an alternative approach and a new concept for designing devices.
基金Project (Nos.60871027 and 60971118) supported by the National Natural Science Foundation of China
文摘A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The characterization is performed by theory analysis,circuit simulation,and full-wave electromagnetic (EM) simulation.The negative refractive index (NRI) and backward wave propagation performance of the CRLH TL are demonstrated.For application,a bandpass filter (BPF) with enhanced out-of-band selectivity and harmonic suppression operating at the wireless local area network (WLAN) band is designed,fabricated,and measured by combining the CRLH TL with a complementary electric inductive-capacitive resonator (CELC).Three CELC cells with wideband stopband performance in the conductor strip and ground plane,respectively,are utilized in terms of single negative permeability.The design concept has been verified by the measurement data.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719802)the National Natural Science Founda-tion of China (No. 60378037)the Science and Technology Department of Zhejiang Province, China (No. 2005C31004)
文摘Broadband phase shifters are mostly proposed and fabricated based on the scheme proposed by Shiffman, which uses a coupled line with far ends connected together and a uniform transmission line to give a differential phase shift. Based on the unique dispersion property of the composite right/left-handed (CRLH) metamaterial structure, a new configuration is presented in this paper for fabricating the broadband differential phase shifter, which employs a novel CRLH metamaterial structure as one of the differential phase-shift arms, instead of the conventional coupled line. The new circuit can achieve a phase shift of 90° in an operational bandwidth as broad as one octave and its phase deviations are quite small. An original design of the novel broadband phase shifter is presented, in which the artificial CRLH structure was implemented by microstrip quasi-lumped elements. Both the simulated and measured results of the 90° broadband differential phase shifter are presented.
文摘This paper proposes a tunable zeroth-order resonator on a composite right/left-handed transmission line consisting of a transversely magnetized ferrite substrate periodically loaded by microstrip inductors. Based on the propagation theory of edge guided modes, the analysis procedure of this structure is introduced. The numerical results demonstrate the tunability of the resonant frequency by changing the DC bias magnetic field applied to the ferrite. In contrast to previous work, the proposed structure is easy to design and fabricate and does not require a chip component.
文摘A compact multiband patch antenna is designed by using HFSS in this work, which is filled with composite right/left-handed transmission line (CRLH-TL) structures. The simulated results reveal that the operating frequency becomes lower with left-handed (LH) characteristics of the CRLH-TL structures enhanced, which enable antenna physical size reduction to a large extent. The proposed antenna is fabricated on the substrate Rogers R03201 (relative permittivity of 10.2), which has a compact size of 12 mm×12 mm × 4 mm. Moreover, this antenna exhibits monopole-like radiation pattern at one resonance frequency and patch-like radiation at the other four resonant frequencies. Therefore, the designed antenna is useful for communication systems.