期刊文献+
共找到1,741篇文章
< 1 2 88 >
每页显示 20 50 100
Mechanical behaviors of steel reinforced ECC / concrete composite columns under combined vertical and horizontal loading 被引量:7
1
作者 单奇峰 潘金龙 陈俊涵 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期259-265,共7页
In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composit... In order to improve the load capacity, seismic performance and performance-cost ratio of the columns, the concrete at the base of reinforced concrete (RC) columns is substituted with engineered cementitious composites (ECC) to form ECC/RC composite columns. Based on the existing material properties, the mechanical behaviors of the ECC columns, ECC/RC composite columns and RC columns were numerically studied under combined vertical and horizontal loading with the software of ATENA. Then, the failure mechanism of ECC columns and ECC/RC composite columns were comprehensively studied and compared with that of the RC columns. Then, the effects of the height of the ECC, the axial compression ratio, and the transverse reinforcement ratio on the mechanical behaviors of the composite or the ECC column are studied. The calculation results show that the ultimate load capacity, ductility and crack resistance of the ECC or ECC/RC composite columns are superior to those of the RC columns. The ECC/RC composite column with a height of the ECC layer of 1.2h ( h is the height of the cross section) can achieve similar mechanical properties of a full ECC column. With high shear strength, ECC can undertake the shear force and significantly reduce the amount of stirrups, avoiding construction issues and promoting its engineering application. 展开更多
关键词 engineered cementitious composites ECC ECC/RC composite columns compression-bending behavior numerical analysis parametric analysis
下载PDF
Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction 被引量:5
2
作者 T.Shenthan R.Nashed +1 位作者 S.Thevanayagam G.R.Martin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期39-50,共12页
The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and miti... The objective of this study is to develop an analytical methodology to evaluate the effectiveness of vibro stone column (S.C.) and dynamic compaction (D.C.) techniques supplemented with wick drains to densify and mitigate liquefaction in saturated sands and non-plastic silty soils. It includes the following: (i) develop numerical models to simulate and analyze soil densitication during S.C. installation and D.C. process, and (ii) identify parameters controlling post-improvement soil density in both cases, and (iii) develop design guidelines for densification of silty soils using the above techniques. An analytical procedure was developed and used to simulate soil response during S.C. and D.C. installations, and the results were compared with available case history data. Important construction design parameters and soil properties that affect the effectiveness of these techniques, and construction design choices suitable for sands and non-plastic silty soils were identified. The methodology is expected to advance the use of S.C. and D.C. in silty soils reducing the reliance on expensive field trials as a design tool. The ultimate outcome of this research will be design charts and design guidelines for using composite stone columns and composite dynamic compaction techniques in liquefaction mitigation of saturated silty soils. 展开更多
关键词 liquefaction mitigation silty soils composite stone columns dynamic compaction
下载PDF
Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading 被引量:8
3
作者 Pan Jinlong Mo Chuang +1 位作者 Xu Li Chen Junhan 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期70-78,共9页
To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite col... To improve the seismic performance of columns, engineered cementitious composite (ECC) is introduced to partially substitute concrete at the base of the columns to form ECC,/reinforced concrete ( RC) composite columns. The mechanical behaviors of the ECC/RC composite columns are numerically studied under low-cyclic loading with the finite element analysis softwareof MSC. MARC. It is found that the ECC/RC composite columns can significantly enhance the load capacity, the ductility ad energy dissipation of columns. Then, the effects of the height of the ECC, the axial compression ratio and the longitudinal reinforcement ratio on the seismic behaviors of the composite columns are parametrically studied. The results show that the ECC/RC composite column with a height of the ECC layer of 0. Sh(h is the height to the cross-section) can achieve similar seismic performance of a full ECC column. The peak load of the composite column increases significantly while the ductility decreases with the increase of the axial compression ratio. Increasing the longitudinal reinforcement ratio within a certain range can improve the ductility and energy dissipation capacity and almost has no effect on load capacity. The aalysis results ae instructive and valuable for reference in designing ECC structures. 展开更多
关键词 engineered cementitious composites ECC) ECC/RC composite columns hysteretic curves DUCTILITY energy dissipation parametric analysis
下载PDF
Behavior of slender steel concrete composite columns in eccentric loading 被引量:1
4
作者 起根田 张孟喜 李永和 《Journal of Shanghai University(English Edition)》 CAS 2009年第6期481-488,共8页
Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The l... Ten slender steel reinforced cencrete (SRC) composite columns are tested under eccentric loading conditions. Effects of concrete strength, slenderness of columns and eccentricity of the axial load are studied. The load-carrying capacity is reduced with increased slenderness ratio and eccentricity. Concrete strength has no obvious influence on eccentrically loaded columns. Then, a nonlinear numerical method of pin-ended slender columns is also presented. This method is applicable for determining the material failure load or buckling failure load of a slender steel reinforced concrete composite column. In this method both material and geometric nonlinearities are taken into account. The results of numerical analysis accord well with the test results. The test results are also compared with the results predicted by ACI318-05 and the China Specifications. 展开更多
关键词 steel concrete composite column BEHAVIOR nonlinear analysis
下载PDF
Bearing capacity of composite columns reinforced by concrete filled steel tube 被引量:1
5
作者 韦建刚 ZHU Pu CHEN Bao-chun 《Journal of Chongqing University》 CAS 2013年第1期27-34,共8页
In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance ... In this study, nine simplified short composite columns consisting of core CFST (concrete filled steel tube) of different diameters and outer reinforced concrete were constructed to study their compressive performance under axial or eccentric compression. The failure mode is characterized by the crush of the outer concrete. The bearing capacity increases at first and then decreases with further increase of the position coefficient. It can be concluded that position coefficient is an important structural parameter that has considerable influences on the ultimate bearing capacity of the composite columns. The outer concrete, steel tubes and longitudinal reinforcement are found to work in a cooperative manner under axial or eccentric compression when the position coefficient is about 0.5. An improved bearing capacity algorithm that takes the position coefficient into account has been proposed based on the experimental and simulation results and current technical specification in China. It has been proven to be precise and safe. 展开更多
关键词 concrete filled steel tube composite column position factor TEST FORMULA
下载PDF
Mechanical Behavior of Rectangular Steel-Reinforced ECC/Concrete Composite Column under Eccentric Compression 被引量:2
6
作者 潘金龙 鲁冰 +2 位作者 顾大伟 夏正昊 夏天阳 《Transactions of Tianjin University》 EI CAS 2015年第3期269-277,共9页
In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite (ECC) is introduced to partially subs... In order to improve the seismic performance, deformation ability and ultimate load-carrying capacity of columns with rectangular cross section, engineered cementitious composite (ECC) is introduced to partially substitute concrete in the edge zone of reinforced concrete columns and form reinforced ECC/concrete composite columns. Firstly, based on the assumption of plane remaining plane and the simplified constitutive models, the calculation method of the load-carrying capacity of reinforced ECC/concrete columns is proposed. The stress and strain distribu- tions and crack propagation of the composite columns in different states of eccentric compressive loading are ana- lyzed. Then, nonlinear finite element analysis is conducted to study the mechanical performance of reinforced ECC/concrete composite columns with rectangular cross section. It is found that the simulation results are in good agreement with the theoretical results, indicating that the proposed method for calculating the load-carrying capacity of concrete/ECC composite columns is valid. Finally, based on the proposed method, the effects of ECC thickness, com- pressive strength of concrete and longitudinal reinforcement ratio on the mechanical performance of reinforced ECC/ concrete composite columns are analyzed. Calculation results indicate that increasing the thickness of ECC layer or longitudinal reinforcement ratio can effectively increase the ultimate load-carrying capacity of the composite column with both small and large eccentricity, but increasing the strength of concrete can only increase the ultimate Ioad- carrying capacity of the composite column with small eccentricity. 展开更多
关键词 engineered cementitious composite (ECC) steel-reinforced concrete ECC/concrete composite column eccentric compression behavior ultimate load-carrying capacity
下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
7
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
下载PDF
Comparison between Composite Column Using Limestone and Basalt Concrete 被引量:2
8
作者 Hamadallah Al-Baijat Andrea Benedetti 《Open Journal of Civil Engineering》 2013年第1期1-6,共6页
This research is conducted to study the experimental behavior of composite steel-concrete columns with basalt additives. Various percentages of basalt are added to the concrete mixes to investigate its effect on the t... This research is conducted to study the experimental behavior of composite steel-concrete columns with basalt additives. Various percentages of basalt are added to the concrete mixes to investigate its effect on the total axial compressive capacity of the columns. Expected failure scenarios of the columns are: concrete compressive failure, buckling of steel section, and de-bonding between steel and concrete sections. A conventional limestone composite column was used as base mix. The results of the study indicate a significant improvement in structural behavior and strength of the columns by increasing the percentage of basalt content. 展开更多
关键词 composite column BASALT MIX JORDAN
下载PDF
Seismic Behavior of Confined RC ColumnComposite Beam Joints
9
作者 张谦 于庆荣 +1 位作者 管俊峰 吴智敏 《Transactions of Tianjin University》 EI CAS 2014年第3期174-181,共8页
In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether... In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether to reinforce weakened flanges were used as parameters in designing these five joints. Failure characteristics, hysteretic curves, skeleton curves, ductility, energy dissipation, strength degradation, and stiffness degradation were analyzed. The test results revealed that the steel beam flanges in the joints were equivalent to the tie rod. Weakened flanges resulted in poor seismic behavior; however, the seismic behavior could be improved by increasing studs and reinforcing weakened flanges. The joint steel plate hoops, equivalent to stirrups, did not yield when the maximum load was reached, but yielded when the failure load was reached for the joints with shear failure. Increasing stud-type joints and reinforcing flange-type joints ensured good seismic behavior and met project requirements. Based on the experimental results, the failure mechanism of the joints was discussed, and the shear capacity equations of the joints was presented. 展开更多
关键词 seismic behavior JOINT confined RC column composite beam
下载PDF
Experimental Study on Seismic Behavior of Exterior Joints of Special-shaped Columns with Different Lengths of Limbs
10
作者 曲福来 黄承逵 赵顺波 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期46-50,共5页
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack... Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core. 展开更多
关键词 special-shaped column Length of limb Frame joint DUCTILITY Energy dissipation
下载PDF
An Experimental Study of Composite Columns Filled with Eucalyptus nitens Timber under Axial Compression
11
作者 Yingyao Cheng Xudong Chen +2 位作者 Huaming An Huimin Wang Kai Tao 《Journal of Renewable Materials》 SCIE EI 2023年第2期825-836,共12页
Eucalyptus nitens(E.nitens)has been much used for producing paper but also shows promise for structural applications.In this study,static compressive tests were undertaken to examine its suitability to be used in an i... Eucalyptus nitens(E.nitens)has been much used for producing paper but also shows promise for structural applications.In this study,static compressive tests were undertaken to examine its suitability to be used in an innovative composite column.The composite column was comprised of a rectangular steel tube with E.nitens timber infill.The nonlinear compressive behaviour of the composite column filled with E.nitens wood for both dry and wet conditions was examined.The same tests on rectangular steel tubes and bare dry and wet E.nitens samples were also undertaken as a comparison.For samples with different conditions,the ultimate capacity was evaluated and the effect of each condition on the compressive behaviour of the composite column was clarified.The steel tubes showed greater ductile behaviour,and more ductility was found in the wet samples.The steel tubes with E.nitens timber infill samples exhibited a greater linear elastic range connected with higher maximum loads,while the bare timber samples could support only lower maximum loads.The results from this research were promising for the use of rectangular steel tubes with E.nitens timber infill in structural applications. 展开更多
关键词 Hollow steel tubes EUCALYPTUS high moisture content composite column with timber infill compression
下载PDF
Numerical Modeling on Seismic Performance of Castellated Composite Beam⁃Reinforced Concrete Column Connection
12
作者 Hongwei Ma Junjie Wang Yang Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2021年第2期62-73,共12页
The hybrid structure consisting of castellated composite beam and compound spiral hoop reinforced concrete column take full advantages of steel and concrete material.To popularize the structural form in real condition... The hybrid structure consisting of castellated composite beam and compound spiral hoop reinforced concrete column take full advantages of steel and concrete material.To popularize the structural form in real conditions,a beam⁃through⁃type beam⁃column connection is proposed.Two 1/2⁃scaled connection specimens were tested and three⁃dimensional finite element models of the beam⁃column connection were set up.The longitudinal reinforcements,concrete beam,and column were simulated by link and solid elements,respectively.The influences of the parameters such as expansion ratio,location of web opening,and original height of steel beam were studied.The results show that connections possessed high initial rigidity.The expansion ratio of steel beam showed more important influence on the connection’s ultimate bearing capacity.For the connection models with steel beam expansion ratio of 1.4,the maximum increment of the ultimate bearing capacity of the connection could reach 28%.In order to prevent the local buckling failure of steel beam from occurring near web opening,the expansion ratio of steel beam should not be greater than 1.3. 展开更多
关键词 castellated composite beam beam⁃column connection finite element analysis expansion ratio
下载PDF
Evaluation of Current Design Practices on Estimation of Axial Capacity of Concrete Encased Steel Composite Stub Columns: A Review
13
作者 Amiya Kumar Samanta Amit Paul 《Journal of Civil Engineering and Architecture》 2013年第9期1080-1091,共12页
This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameter... This paper presents the design assessment of concrete encased I-sections composite column based approaches given in Eurocode, ACI Code, BS Code and AISC-LRFD. This study includes comparison of various design parameters and evaluation of design strength based on the procedures predicted in the various codes of practices. A practical example has been assumed and calculation has been shown to evaluate their potentiality in understanding in predicting the potentiality of various procedures. The obtained results based on the methods varies widely, because of the different design considerations adopted by the different codes. As such, they have hardly considered the effect of confinement of the concrete due to the presence of longitudinal reinforcements as well as lateral ties. The study has attempted to throw light on critical review and their potentiality in assessing the strength of such concrete encased composite column under purely axial loads. 展开更多
关键词 Concrete encased structural steel composite column design philosophy.
下载PDF
Static behavior of semi-rigid thin-walled steel-concrete composite beam-to-column joints with bolted partial-depth flush end plate:experimental study
14
作者 郜京峰 张耀春 +2 位作者 王海明 姚淇誉 金路 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期91-102,共12页
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ... A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints. 展开更多
关键词 SEMI-RIGID thin-walled steel-concrete composite structures beam-to-column joints static behavior experimental study
下载PDF
Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies 被引量:2
15
作者 Jianxin Wang Na Yu +2 位作者 Mengqi Chen Lin Cong Lanyi Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期1087-1101,共15页
The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has a... The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE). 展开更多
关键词 Dividing wall column composition control Temperature inferential control PI strategy Model predictive control Genetic algorithm
下载PDF
Testing of a Full-Scale Composite Floor Plate
16
作者 Dennis Lam Xianghe Dai Therese Sheehan 《Engineering》 SCIE EI 2019年第2期223-233,共11页
A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the co... A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the concrete slab along the line of the primary beams. This is important in cases where the steel decking is discontinuous when it is orientated parallel to the beams. In this case, it is important to demonstrate that the amount of transverse reinforcement required to transfer local forces from the shear connectors can be reduced relative to the requirements of Eurocode 4. The mechanism under study involved in-plane compression forces being developed in the slab due to the restraining action of the floor plate, which was held in position by the peripheral composite beams;while the secondary beams acted as transverse ties to resist the forces in the floor plate that would otherwise lead to splitting of the slab along the line of the primary beams. The tendency for cracking along the center line of the primary beam and at the peripheral beams was closely monitored. This is the first large floor plate test that has been carried out under laboratory conditions since the Cardington tests in the early 1990s, although those tests were not carried out to failure. This floor plate test was designed so that the longitudinal force transferred by the primary beams was relatively high (i.e., it was designed for full shear connection), but the transverse reinforcement was taken as the minimum of 0.2% of the concrete area. The test confirmed that the primary beams reached their plastic bending resistance despite the discontinuous decking and transverse reinforcement at the minimum percentage given in Eurocode 4. Based on this test, a reduction factor due to shear connectors at edge beams without U-bars is proposed. 展开更多
关键词 FLOOR plate test composite BEAMS Edge BEAMS EUROCODE 4 IN-PLANE effect column removal Robustness
下载PDF
Consolidation of high replacement ratio stone column-reinforced ground:Analytical solutions incorporating clogging effect
17
作者 Jinxin Sun Mengmeng Lu +1 位作者 Baolong Xu Jie Shan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3311-3326,共16页
The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for... The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage. 展开更多
关键词 CONSOLIDATION composite ground Stone column Clogging effect Ground improvement Analytical model
下载PDF
方钢管混凝土柱穿入式组合节点耗能机制
18
作者 徐庆元 雷建雄 +4 位作者 丁发兴 周期石 张华帅 邱远光 杨建军 《工程力学》 北大核心 2025年第1期116-128,共13页
开展了4个翼缘削弱的钢管混凝土柱穿入式组合节点抗震性能与三维实体有限元精细化模型分析。在混凝土三轴塑性损伤和钢材混合强化模型基础上,进一步引入钢材的韧性损伤模型,探讨了钢梁削弱程度对节点抗震性能与破坏形式的影响规律,结果... 开展了4个翼缘削弱的钢管混凝土柱穿入式组合节点抗震性能与三维实体有限元精细化模型分析。在混凝土三轴塑性损伤和钢材混合强化模型基础上,进一步引入钢材的韧性损伤模型,探讨了钢梁削弱程度对节点抗震性能与破坏形式的影响规律,结果显示引入钢材韧性损伤的有限元模型分析结果与试验结果更加吻合,且钢梁削弱程度降低了该节点的刚度、承载力和耗能。随后对不同钢梁尺寸和柱端拉筋强构造下的组合节点进行了承载力、刚度和塑性耗能分配与失效机制的影响规律分析,分析结果表明:穿入式节点分别在梁-柱抗弯承载力比介于1.66~2.11、梁-柱线刚度比介于1.90~1.96、梁-柱截面刚度比介于1.16~1.21时,将由梁耗能向柱耗能转变;柱端拉筋强构造技术后,由于拉筋直接约束混凝土,大幅度提升了柱端抗弯承载力和耗能能力,组合节点在高轴压比时仍维持梁端失效破坏模式;根据《建筑抗震设计规范》,梁-柱抗弯承载力比取值小于1时为强柱弱梁,这对穿入式组合节点强柱弱梁的定义较为保守。 展开更多
关键词 方钢管混凝土柱 钢-混凝土组合梁 穿入式组合节点 韧性损伤 塑性耗能
下载PDF
SRPE管约束GFRP海砂混凝土柱的轴压力学性能研究
19
作者 霍静思 王志滨 +2 位作者 李鑫雷 吴扬杭 高剑平 《建筑科学与工程学报》 北大核心 2025年第1期14-25,共12页
采用试验与数值模拟相结合的方法,研究了钢骨架增强聚乙烯(SRPE)管约束玻璃纤维增强塑料(GFRP)海砂混凝土柱的力学性能和受力机理。通过24个轴压短柱试验,研究SRPE管钢丝体积配箍率、混凝土强度和GFRP箍筋间距等参数对组合柱力学性能的... 采用试验与数值模拟相结合的方法,研究了钢骨架增强聚乙烯(SRPE)管约束玻璃纤维增强塑料(GFRP)海砂混凝土柱的力学性能和受力机理。通过24个轴压短柱试验,研究SRPE管钢丝体积配箍率、混凝土强度和GFRP箍筋间距等参数对组合柱力学性能的影响规律;在确定合理材料本构模型的基础上,运用ABAQUS有限元软件进行数值模拟和参数分析。结果表明:在试验参数范围内组合柱虽均发生剪切破坏,但仍具有较好的延性,说明SRPE管和GFRP箍筋对海砂混凝土形成了良好的约束效应;有限元数值参数分析结果表明,提高环向钢丝体积配箍率能显著提升峰值承载力、剩余承载力和延性,提高混凝土强度能显著提升峰值承载力、剩余承载力和弹性刚度,但延性明显降低,其他参数对组合柱力学性能的影响程度不显著;基于参数分析结果,提出了组合柱轴压承载力和峰值应变简化计算式,可为类似工程实践提供参考。 展开更多
关键词 SRPE管 GFRP筋 海砂混凝土 组合柱 轴压承载力 简化计算
下载PDF
UHPC预制管混凝土组合柱抗震性能
20
作者 欧智菁 陈伟隆 曹磊 《西南交通大学学报》 北大核心 2025年第1期63-71,共9页
为研究在低周反复荷载下超高性能混凝土(UHPC)预制管混凝土组合柱的抗震性能,进行共计3根UHPC预制管混凝土组合柱和1根钢筋混凝土柱的拟静力试验,分析在不同UHPC强度和核心混凝土有无配筋情况下,各组合柱试件的破坏模式、位移延性、耗... 为研究在低周反复荷载下超高性能混凝土(UHPC)预制管混凝土组合柱的抗震性能,进行共计3根UHPC预制管混凝土组合柱和1根钢筋混凝土柱的拟静力试验,分析在不同UHPC强度和核心混凝土有无配筋情况下,各组合柱试件的破坏模式、位移延性、耗能能力、刚度退化等方面抗震性能.分析结果表明:UHPC预制管混凝土组合柱试件的滞回曲线较为饱满,破坏形态基本相同,均为整体压弯破坏;与传统钢筋混凝土(RC)柱相比,UHPC预制管混凝土组合柱刚度、屈服荷载、延性性能均有提升;随着UHPC强度增大,组合柱试件的滞回曲线更为饱满,耗能能力增强,残余位移小,水平峰值荷载和位移延性系数分别提高了20.60%和6.40%,表现出良好的整体抗震性能;采用ABAQUS程序建立组合柱的有限元分析模型,计算结果与试验结果吻合良好;轴压比、长细比、UHPC强度是影响UHPC预制管混凝土组合柱抗震性能的重要参数,可为同类工程设计提供参考. 展开更多
关键词 超高性能混凝土(UHPC) 组合柱 抗震性能 拟静力试验 有限元分析
下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部