期刊文献+
共找到994篇文章
< 1 2 50 >
每页显示 20 50 100
Composite Panels from the Combination of Rice Husk and Wood Chips with a Natural Resin Based on Tannins Reinforced with Sugar Cane Molasses Intended for Building Insulation: Physico-Mechanical and Thermal Properties
1
作者 Paul Nestor Djomou Djonga Rosellyne Serewane Deramne +2 位作者 Gustave Assoualaye Ahmat Tom Tégawendé Justin Zaida 《Journal of Materials Science and Chemical Engineering》 2024年第2期19-30,共12页
The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips an... The objective of this work is to develop new biosourced insulating composites from rice husks and wood chips that can be used in the building sector. It appears from the properties of the precursors that rice chips and husks are materials which can have good thermal conductivity and therefore the combination of these precursors could make it possible to obtain panels with good insulating properties. With regard to environmental and climatic constraints, the composite panels formulated at various rates were tested and the physico-mechanical and thermal properties showed that it was essential to add a crosslinker in order to increase certain solicitation. an incorporation rate of 12% to 30% made it possible to obtain panels with low thermal conductivity, a low surface water absorption capacity and which gives the composite good thermal insulation and will find many applications in the construction and real estate sector. Finally, new solutions to improve the fire reaction of the insulation panels are tested which allows to identify suitable solutions for the developed composites. In view of the flame tests, the panels obtained are good and can effectively combat fire safety in public buildings. 展开更多
关键词 composite panels Tannins Reinforced Sugar Cane Molasses Building Insulation Mechanical and Thermal Properties
下载PDF
Experimental investigation of engineered geopolymer composite for structural strengthening against blast loads
2
作者 Shan Liu Chunyuan Liu +3 位作者 Yifei Hao Yi Zhang Li Chen Zhan Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期496-509,共14页
The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolyme... The recent increase in blast/bombing incidents all over the world has pushed the development of effective strengthening approaches to enhance the blast resistance of existing civil infrastructures.Engineered geopolymer composite(EGC)is a promising material featured by eco-friendly,fast-setting and strain-hardening characteristics for emergent strengthening and construction.However,the fiber optimization for preparing EGC and its protective effect on structural elements under blast scenarios are uncertain.In this study,laboratory tests were firstly conducted to evaluate the effects of fiber types on the properties of EGC in terms of workability,dry shrinkage,and mechanical properties in compression,tension and flexure.The experimental results showed that EGC containing PE fiber exhibited suitable workability,acceptable dry shrinkage and superior mechanical properties compared with other types of fibers.After that,a series of field tests were carried out to evaluate the effectiveness of EGC retrofitting layer on the enhancement of blast performance of typical elements.The tests include autoclaved aerated concrete(AAC)masonry walls subjected to vented gas explosion,reinforced AAC panels subjected to TNT explosion and plain concrete slabs subjected to contact explosion.It was found that EGC could effectively enhance the blast resistance of structural elements in different scenarios.For AAC masonry walls and panels,with the existence of EGC,the integrity of specimens could be maintained,and their deflections and damage were significantly reduced.For plain concrete slabs,the EGC overlay could reduce the diameter and depth of the crater and spallation of specimens. 展开更多
关键词 Engineered geopolymer composites Fiber optimization Strengthening material Blast resistance Masonry wall Reinforced AAC panel Plain concrete slab
下载PDF
Development of Composite Cellular Cores for Sandwich Panels Based on Folded Polar Quadra-Structures 被引量:1
3
作者 Valelltin Khaliulin Wang Zhijin Elena Gershtein 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期519-528,共10页
An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard fra... An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented. Polar folded quadra structures are regarded as a geometric basis for these cores whose standard frag ment has lhe fourlh degree of axial symmelry. The classification of the polar strucluresaredeseribedanda method of various quadra slrueture synthesis is developed. A possibilily to provide high strength of lhe structure due m preservation of faces reinforcement pattern is presented. Arrangemen! of the plane core on a bi curvature surface is also introduced. Besides, provision of isotropyof the core in two or three directions are described. Finally, exam ples of cellular folded cores manufaclured from basalt reinforced plaslic are demonslrated. 展开更多
关键词 composite sandwich panel cellular core folded polar quadra-structure synthesis of cellular struclure quadra-struclure classification
下载PDF
A STUDY OF THE POSTBUCKLING PATH OF CYLINDRICALLY CURVED PANELS OF LAMINATED COMPOSITE MATERIALS DURING LOADING AND UNLOADING 被引量:1
4
作者 董万林 黄小清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第7期651-657,共7页
In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not... In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not coincide with unloading paths has been found. Numerical results are given for cylindrically curved cross-ply panels subjected to uniform uniaxial compression under two types of boundary conditions. The influence of the number of layers, the panels curvature and the initial imperfection on the postbuckling paths is discussed. 展开更多
关键词 A STUDY OF THE POSTBUCKLING PATH OF CYLINDRICALLY CURVED panels OF LAMINATED composite MATERIALS DURING LOADING AND UNLOADING
下载PDF
Low frequency noise reduction using stiff light composite panels
5
作者 DENG Yongchang, LIN Weizheng (Institute of Acoustics, Tongji University, Shanghai 200092, China) 《声学技术》 CSCD 2003年第z1期28-36,共9页
The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, t... The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel. 展开更多
关键词 low frequency STIFF composite panels noise REDUCTION
下载PDF
Power transmission through double-walled laminated composite panels considering porous layer-air gap insulation
6
作者 M.H.SHOJAEIFARD R.TALEBITOOTI +1 位作者 B.RANJBAR R.AHMADI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第11期1447-1466,共20页
The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling ... The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed. 展开更多
关键词 laminated composite plate double panel sound transmission loss porousmaterial statistical energy analysis (SEA)
下载PDF
Potentials of <i>Bambusa vulgaris</i>Grown in Southeast Nigeria for the Manufacture of Wood-Cement Composite Panels
7
作者 Eugene O. Onuorah Elias Chukwunonso Nnabuife Joseph T. Nwabanne 《Journal of Minerals and Materials Characterization and Engineering》 2014年第5期363-373,共11页
In this work, the potentials of Bambusa vulgaris grown in southeast Nigeria for the manufacture of wood-cement composite panels were studied. Representative culms of Bambusa vulgaris were collected from a 4-year-old s... In this work, the potentials of Bambusa vulgaris grown in southeast Nigeria for the manufacture of wood-cement composite panels were studied. Representative culms of Bambusa vulgaris were collected from a 4-year-old stand at lower Anambra river basin, southeast, Nigeria. Fiber morphological properties and proximate chemical analysis were determined in accordance with the provisions of the Technical Association of the Pulp and Paper Industries (TAPPI, 1998). Fiber slenderness ratio was 160.95:1, component solubility of 3.09, 5.60, and 19.8 percent for cold water soak for 24 hrs;hot water soak at 80°C for 1 hr, and 1% NaOH soak for 24 hrs respectively. Composite panels were made at 1200 kg/m3 and 800 kg/m3 density levels with flakes of different soak treatments (untreated/control;cold water soak for 24 hrs;water at 80°C soak for 1 hr and 1% NaOH soak for 24 hrs) at variable cement/B. vulgaris mix ratios (1:1, 1.5:1, 2:1, 2.5:1 and 3:1 wt/wt) with 3% CaCl2 as accelerator applied to the wood furnish before cement mixing. Prepared furnish was subjected to initial pre-pressing of 0.5 N/mm2 and final consolidation of 1.4 N/mm2 retained for 24 hrs. Panels were sampled and tested after 28 days for Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) in bending and for water absorption (WA) and thickness swelling (TS) due to a 24-hr water soak. Test was in accordance with provisions of American Standard for Testing of Materials (ASTM-1998). Properties ranged from a low of 25.00 to 75.45 N/mm2 for MOR;4128 to 15,065 N/mm2 for MOE;15.01 to 36.11 percent for WA and 3.04 to 12.72 percent for TA. Effect of production mix on properties was determined using factorial analysis. Except for composite density whose effect was not significant at 0.05% level, all production mix was found significant at 0.01% level at the second order level of interactions. All panels met minimum property requirements of American National Standard Institute 208-2-1994 and 208-1-1993, British Standard (BS 5669, 1979) and Malaysian Standard (MS 934, 1984). 展开更多
关键词 Fiber Characteristics PROXIMATE Analysis Soak Treatments panel Density Cement/B. VULGARIS Mix Ratios composite Properties
下载PDF
EXPERIMENTAL STUDY ON DAMAGE TOLERANCE BEHAVIOUR OF COMPOSITE PANELS WITH SOFTENING STRIPS
8
作者 Shen Zhen and Liu Junshi Aircraft Strength Research InstituteZhang Yanming and Tao MeizhenNorthwestern Polytechnical University 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第1期7-15,共9页
In this paper an experimental study on damage tolerance behaviour of composite panels with softening strips is carried out. A prediction method of residual strength of panels with softening strips is proposed. The com... In this paper an experimental study on damage tolerance behaviour of composite panels with softening strips is carried out. A prediction method of residual strength of panels with softening strips is proposed. The comparison between estimated and experimental results shows that the prediction method can be applied to design. In this paper the failure mechanisms are described. 展开更多
关键词 EXPERIMENTAL STUDY ON DAMAGE TOLERANCE BEHAVIOUR OF composite panels WITH SOFTENING STRIPS MODE
下载PDF
Manufacturing cost optimization and estimation combined computer of composite-stiffened panels
9
作者 叶金蕊 张博明 白光辉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期369-375,共7页
The primary goal of this study is to fully grasp the production flow of the new processing technologies for manufacturing composite stiffened panels incorporating cost as one of the design variables early in the desig... The primary goal of this study is to fully grasp the production flow of the new processing technologies for manufacturing composite stiffened panels incorporating cost as one of the design variables early in the design process. An approach is presented to determine the optimum process for cost as objective function. A cost estimation model is established based on the integrally molding process. In the model,the cost drivers which are related to the manufacture processes in terms of material,labor,tool and equipment costs are taken into account. At the same time,estimation software combined computer is developed to aid optimization design. A case of manufacturing composite stiffened panels with T-shaped stiffeners is examined. Excellent agreement shows the optimum process for cost is obtained for the composite stiffened panel with cocuring. It is also revealed that the estimation software combined computer is efficient. The estimation methodology is valid to guide design of the manufacturing process for the composite-stiffened panel. 展开更多
关键词 composite-stiffened panel manufacturing process optimization COST
下载PDF
Numerical-experimental method for elastic parameters identification of a composite panel 被引量:3
10
作者 Dong Jiang Rui Ma +1 位作者 Shaoqing Wu Qingguo Fei 《Theoretical & Applied Mechanics Letters》 CAS 2014年第6期20-25,共6页
A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial value... A hybrid numerical-experimental approach to identify elastic modulus of a textile composite panel using vibration test data is proposed and investi- gated. Homogenization method is adopted to predict the initial values of elastic parameters of the composite, and parameter identification is transformed to an optimization problem in which the objective function is the minimization of the discrepancies between the experimental and numerical modal data. Case study is conducted employing a woven fabric reinforced composite panel. Three parameters (Ell, E22, G12) with higher sensitivities are selected to be identified. It is shown that the elastic parameters can be accurately identified from experimental modal data. 展开更多
关键词 composite panel elastic modulus parameter identification modal data numerical-experimental method
下载PDF
Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets 被引量:2
11
作者 A.AMIRI M.MOHAMMADIMEHR M.ANVARI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第7期1027-1038,共12页
In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order she... In this paper,the stresses and buckling behaviors of a thick-walled mi-cro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC)face sheets are considered based on the high-order shear deformation theory(HSDT)and the modified couple stress theory(MCST).The governing equations of equi-librium are obtained based on the total potential energy principle.The effects of various parameters such as the aspect ratio,elastic foundation,temperature changes,and volume fraction of the canbon nanotubes(CNTs)on the critical buckling loads,normal stress,shear stress,and deflection of the thick-walled micro cylindrical sandwich panel consider-ing different distributions of CNTs are examined.The results are compared and validated with other studies,and showing an excellent compatibility.CNTs have become very use-ful and common candidates in sandwich structures,and they have been extensively used in many applications including nanotechnology,aerospace,and micro-structures.This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae. 展开更多
关键词 stress and buckling analysis thick-walled micro cylindrical sandwich panel flexible foam core carbon nanotube reinforced composite(CNTRC)face sheet high-order shear deformation theory(HSDT)
下载PDF
Numerical and Experimental Study on Stiffened Composite Panel Repaired by Bolted Joints under Compressive Load
12
作者 Jifeng Xu Yuanpei Lan +1 位作者 Xingming Zhang Kui Du 《Journal of Applied Mathematics and Physics》 2018年第8期1763-1771,共9页
Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared... Numerical and experimental study was conducted to investigate the failure mode and strength performance of stiffened composite panel repaired by bolted joints under compressive load, and the results were then compared with those from virgin stiffened composite panel without any damage. A finite element analysis model was established for repaired and virgin stiffened composite panels under compressive load, the 3D Hashin criteria was applied to identify the composite structure failure, and the secondary stress criteria was adopted to identify the adhesive failure between the base laminate and the stiffener. The failure modes of repaired stiffened composite panels were stiffened composite panels breaking off along the bolt joints. The experimental results were consistent with the finite element analysis results, indicating the reliability of the finite element analysis model. 展开更多
关键词 Stiffened composite panel BOLTED JOINTS REPAIR Compression Performance 3D FINITE ELEMENT Model
下载PDF
Significance Analysis of Flexural Behaviour of Hybrid Sandwich Panels 被引量:1
13
作者 Jauhar Fajrin Yan Zhuge +1 位作者 Frank Bullen Hao Wang 《Open Journal of Civil Engineering》 2013年第3期1-7,共7页
This paper presents the significance analysis of a new type of hybrid composite sandwich wall panel which can be manufactured as modular panelised system. Two different types of natural fibers reinforced plastics (NFR... This paper presents the significance analysis of a new type of hybrid composite sandwich wall panel which can be manufactured as modular panelised system. Two different types of natural fibers reinforced plastics (NFRP) laminate were incorporated into the new sandwich panel as an intermediate layer. The significance analysis in this research has been carried out using analysis of variance (ANOVA). As the aim of the analysis is to select the most appropriate natural fiber composites for the intermediate layer, the experiments were arranged as a single factor experiment in which 3 levels of a factor have been examined. The factor refers to the type of intermediate layer used in the sandwich panel. The result of this study shows that the incorporation of intermediate layer has significantly enhanced the load carrying capacity of the sandwich panels. 展开更多
关键词 Hybrid Structure SANDWICH panels SIGNIFICANCE ANALYSIS NATURAL Fiber composites Building Construction
下载PDF
Collaborative force and shape control for large composite fuselage panels assembly 被引量:1
14
作者 Zhanghao WANG Dongsheng LI +2 位作者 Liheng SHEN Yi SUI Yunong ZHAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期213-225,共13页
This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused... This study proposed a force and shape collaborative control method that combined method of influence coefficients(MIC)and the elitist nondominated sorting genetic algorithm(NSGA-II)to reduce the shape deviation caused by manufacturing errors,gravity deformation,and fixturing errors and improve the shape accuracy of the assembled large composite fuselage panel.This study used a multi-point flexible assembly system driven by hexapod parallel robots.The proposed method simultaneously considers the shape deviation and assembly load of the panel.First,a multi-point flexible assembly system driven by hexapod parallel robots was introduced,with the relevant variables defined in the control process.In addition,the corresponding mathematical model was constructed.Subsequently,MIC was used to establish the prediction models between the displacements of actuators and displacements of panel shape control points,deformation loads applied by the actuators.Following the modeling,the shape deviation of the panel and the assembly load were used as the optimization objectives,and the displacements of actuators were optimized using NSGA-II.Finally,a typical composite fuselage panel case study was considered to demonstrate the effectiveness of the proposed method. 展开更多
关键词 ASSEMBLY Collaborative force and shape control composite panel Hexapod parallel robots Method of influence coefficients
原文传递
Acoustic Properties of Micro-Perforated Panels Made from Oil Palm Empty Fruit Bunch Fiber Reinforced Polylactic Acid
15
作者 Vignesh Sekar Se Yong Eh Noum +4 位作者 Azma Putra Sivakumar Sivanesan Kok Chun Chin Yi San Wong Dg Hafizah Kassim 《Sound & Vibration》 EI 2021年第4期343-352,共10页
This paper presents the development and performance of micro-perforated panels(MPP)from natural fiber reinforced composites.The MPP is made of Polylactic Acid(PLA)reinforced with Oil Palm Empty Fruit Bunch Fiber(OPEFB... This paper presents the development and performance of micro-perforated panels(MPP)from natural fiber reinforced composites.The MPP is made of Polylactic Acid(PLA)reinforced with Oil Palm Empty Fruit Bunch Fiber(OPEFBF).The investigation was made by varying the fiber density,air gap,and perforation ratio to observe the effect on the Sound Absorption Coefficient(SAC)through the experiment in an impedance tube.It is found that the peak level of SAC is not affected,but the peak frequency shifts to lower frequency when the fiber density is increased.This phenomenon might be due to the presence of porosity in the inner wall of the holes.Increasing or decreasing the air gap and perforation ratio shifts the peaks of acoustic absorption either way. 展开更多
关键词 ACOUSTICS micro-perforated panel natural fiber reinforced composite laser cutting impedance tube
下载PDF
Evaluation of the Thermal Performance in External Vertical Enclosures Constituted of Metal Panels
16
作者 Marcela Assunção Faria Henor Artur de Souza Franciele Maria Costa Ferreira 《Journal of Civil Engineering and Architecture》 2021年第10期520-528,共9页
Brazil has a great climatic diversity,with different demands for the adequate thermal performance of buildings,where the variables that impact it have different influences depending on the location and the type of wra... Brazil has a great climatic diversity,with different demands for the adequate thermal performance of buildings,where the variables that impact it have different influences depending on the location and the type of wrapping used.When a prior study of the thermal performance of a building is not done in the design phase,the unpleasant effects for the user appear after the building is ready,and bring with them problems such as internal temperatures that are too high in the summer or too low in the winter.Therefore,the objective of this study is to provide recommendations for the application of ACM(aluminum composite material)composite panels and thermoacoustic(sandwich)tiles for external enclosure in the single-family residential sector.A high standard two-story residence with approximately 162 m^(2)per floor is used as a model and through computer simulations,utilizing the Energyplus program and observing the requirements of the NBR 15.575 performance standard,the thermal performance is evaluated.The factorial experiment was applied encompassing thermal performance variables such as absorptance,natural ventilation and thermophysical properties of the wrapping for three different climatic conditions:extreme winter climate,average climate and extreme summer climate.The results obtained show that the thermoacoustic roof tile keeps the internal temperature more stable independent of external oscillations,while the ACM panels follow the external oscillations,not meeting the expectations of thermal performance and needing passive treatments. 展开更多
关键词 Metallic(wrapping) thermal performance composite panels thermoacoustic tiles.
下载PDF
结构-功能一体化异种复合材料壁板优化与验证
17
作者 钟小平 刘斌 +3 位作者 张纯 李斐 陈子昂 刘彦诚 《空军工程大学学报》 CSCD 北大核心 2024年第3期63-70,共8页
基于航空壁板结构承载-电气功能的一体化需求,对适用于智能蒙皮的异种复合材料壁板开展了优化设计与试验验证。通过在高模量碳纤维蒙皮的外侧增加玻璃纤维层,进行了以碳纤维-玻璃纤维-金属结构单元阵列-玻璃纤维复合顺序的壁板承载-电... 基于航空壁板结构承载-电气功能的一体化需求,对适用于智能蒙皮的异种复合材料壁板开展了优化设计与试验验证。通过在高模量碳纤维蒙皮的外侧增加玻璃纤维层,进行了以碳纤维-玻璃纤维-金属结构单元阵列-玻璃纤维复合顺序的壁板承载-电气功能一体化设计。针对异种复合材料结构的铺层优化需要考虑共胶接的分区域及铺层连续性的工艺要求,发展了基于丢层序列的优化方法,并对于加筋壁板的几何外形、筋条数量、筋条几何参数以及筋条与蒙皮的铺层角度进行了优化设计。通过压缩稳定性试验验证了该结构在承载能力和稳定性方面的收益,明晰了其压缩载荷下的屈曲模态及后屈曲失效机理。 展开更多
关键词 壁板 结构-电气功能一体化 屈曲 失效 复合材料
下载PDF
真空绝热板芯材的研究进展与展望
18
作者 赵伟刚 张倩倩 +4 位作者 蓝钰玲 闫雯 周晓剑 范毜仔 杜官本 《化工进展》 EI CAS CSCD 北大核心 2024年第7期3910-3922,共13页
随着我国经济的迅速发展和人们对生活水平的要求越来越高,节能减排对实现“碳达峰”和“碳中和”的目标显得越来越重要。真空绝热板(vacuum insolation panels,VIP)是一种新型的高效保温隔热材料,其中,芯材作为VIP的核心和骨架结构,不... 随着我国经济的迅速发展和人们对生活水平的要求越来越高,节能减排对实现“碳达峰”和“碳中和”的目标显得越来越重要。真空绝热板(vacuum insolation panels,VIP)是一种新型的高效保温隔热材料,其中,芯材作为VIP的核心和骨架结构,不仅承担着支撑作用,而且是板内热量传递的主要通道,对保证VIP的保温性能具有关键作用。基于此,本文首先重点介绍了真空绝热板在绿色建筑和冷链物流领域应用的意义,明确了目前制约真空绝热板领域发展的关键问题;随后综述了真空绝热板芯材的研究现状和进展,比对了不同种类芯材(颗粒类芯材、泡沫类芯材、纤维类芯材、生物质材料类芯材和复合类芯材)在原料来源、保温性能、生产工艺及环境保护方面的优劣,将绿色、可再生的生物质基材料用作真空绝热板芯材进行了对比探讨;最后对真空绝热板芯材未来的研究方向和发展前景进行了总结和展望。本文指出,传统以玻璃纤维、有机泡沫或者气相二氧化硅为芯材的真空绝热板,存在生产成本高、不可再生、难降解、污染环境等问题,所以通过功能化手段获得新型、绿色、低成本、具有良好微观孔隙结构和高热阻的芯材是制约真空绝热板发展的关键。生物质材料具有来源广泛、成本低廉、绿色环保、孔隙结构丰富等优点,是一种极具潜力的VIP芯材原料,也将是真空绝热板芯材的重要研究方向。因此,生物质基芯材真空绝热板未来的发展还需进一步拓宽其原料来源、改善制备方法和工艺、明确老化和使役性能、关注复合芯材的开发,不断提高VIP的性能,扩展其应用领域。 展开更多
关键词 真空绝热板 芯材 保温性能 传热 生物质 热传导 复合材料
下载PDF
日本UFC桥面板和UFC组合桥面板的研发与应用
19
作者 陈开利(编译) 刘海燕(编译) 《世界桥梁》 北大核心 2024年第3期1-10,共10页
日本较早期建设的城市高速公路桥梁中主要采用钢桥面板和混凝土桥面板。针对钢桥面板的焊缝疲劳开裂和混凝土桥面板的老化现象,研发了超高强度纤维增强混凝土桥面板(UFC桥面板)及UFC组合桥面板,具有高强度、高耐久性。UFC桥面板分为平... 日本较早期建设的城市高速公路桥梁中主要采用钢桥面板和混凝土桥面板。针对钢桥面板的焊缝疲劳开裂和混凝土桥面板的老化现象,研发了超高强度纤维增强混凝土桥面板(UFC桥面板)及UFC组合桥面板,具有高强度、高耐久性。UFC桥面板分为平板型和方格肋型2种类型,可应用于既有公路桥梁的桥面板更换以及新建公路桥梁的桥面板。UFC组合桥面板为在预制PC桥面板顶面设UFC层作为防水层,可省去预制PC桥面板防水层施工,提高施工效率。UFC桥面板和UFC组合桥面板在预制场预制、现场安装,施工便捷,已实际应用在阪神高速公路15号堺线玉出匝道桥桥面板更换工程、阪神高速公路1号环线信浓桥匝道桥新建桥梁工程、东北高速公路宫城白石川桥上行线既有桥面板更换等工程上,可提高桥梁结构的耐久性、减少桥梁养护工作量、降低养护成本。 展开更多
关键词 桥梁工程 UFC桥面板 UFC组合桥面板 预制桥面板 桥面板更换 防水层 耐久性
下载PDF
一种新型结构与保温一体化复合墙板节点试验
20
作者 马少春 谷宇 鲍鹏 《防灾减灾工程学报》 CSCD 北大核心 2024年第2期396-403,共8页
为解决复合墙板节点常见的保温板易燃、易脱落等棘手问题,并使其抗震性能良好。给出了一种新型的结构与保温一体化陶粒混凝土T型复合墙板节点。该复合墙板节点具有夹芯独特构造优势,主要表现在绿色节能,轻质高强,力学性能好,保温系统连... 为解决复合墙板节点常见的保温板易燃、易脱落等棘手问题,并使其抗震性能良好。给出了一种新型的结构与保温一体化陶粒混凝土T型复合墙板节点。该复合墙板节点具有夹芯独特构造优势,主要表现在绿色节能,轻质高强,力学性能好,保温系统连接可靠,还能杜绝火灾的发生。通过对T型复合墙板节点进行抗震试验,分别研究了其滞回性能、破坏机理、承载及变形能力、延性、耗能、损伤等。结果表明:一体化复合墙板节点的破坏顺序为腹板-翼缘-节点核心区;薄弱位置主要发生在腹板脚部,混凝土被拉裂或压碎,钢筋被拉长或压弯等;节点核心区受力相对良好,安全储备充足;符合“强节点,弱构件”设计要求和墙板革新发展政策。延性系数大于3,墙板节点安全性能良好。通过损伤指标评估分析,了解了试件各阶段工作状态。 展开更多
关键词 结构与保温一体化 复合墙板节点 抗震试验 滞回及骨架曲线 损伤指标
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部