期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AEROELASTIC TAILORING OF AERONAUTICAL COMPOSITE WING STRUCTURES
1
作者 Huang Chuanqi Qiao XinDept. of Aircraft Engineering, Nanjing Aeronautical Institute Nanjing 210016, Nanjing, P.R. of China 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1991年第2期245-256,共12页
This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are... This paper deals with the aeroelastic tailoring of aeronautical composite wing surfaces. The objective function is structural weight. Multi constraints, such as displacements, flutter speed and gauge requirements, are taken into consideration. Finite element method is used to the static analysis. Natural vibration modes are obtained by the spectral transformation Lanczos method. Subsonic doublet lattice method is used to obtain the unsteady aerodynamics.The critical flutter speed is generated by V-g method.The optimal problem is solved by the feasible direction method.The thickness of the composite wing skin is simulated by bicubic polynomials, whose coefficients combined with the cross-sectional areas or thicknesses of other finite elements are the design variables. The scale of the problem is reduced by variable linkage. Derivative analysis is performed analytically.Two composite wing boxes and a swept-back composite wing are optimized at the end of the paper. 展开更多
关键词 DESIGN AEROELASTIC TAILORING OF AERONAUTICAL composite wing structureS THAN very
下载PDF
A Layout Optimization Method of Composite Wing Structures Based on Carrying Efficiency Criterion 被引量:6
2
作者 ZHAO Qun DING Yunliang JIN Haibo 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期425-431,共7页
A two-level layout optimization strategy is proposed in this paper for large-scale composite wing structures. Design requirements are adjusted at the system level according to structural deformation, while the layout ... A two-level layout optimization strategy is proposed in this paper for large-scale composite wing structures. Design requirements are adjusted at the system level according to structural deformation, while the layout is optimized at the subsystem level to satisfy the constraints from system level. The approaching degrees of various failure critical loads in wing panels are employed to gauge the structure’s carrying efficiency. By optimizing the efficiency as an objective, the continuity of the problem could be guaranteed. Stiffened wing panels are modeled by the equivalent orthotropic plates, and the global buckling load is predicted by energy method. The nonlinear effect of stringers’ support elasticity on skin local buckle resistance is investigated and approximated by neural network (NN) surrogate model. These failure predictions are based on analytical solutions, which could effectively save calculation resources. Finally, the integral optimization of a large-scale wing structure is completed as an example. The result fulfills design requirements and shows the feasibility of this method. 展开更多
关键词 composite wing structure layout optimization carrying efficiency BUCKLING equivalent stiffness energy method surrogate model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部