On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method...On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.展开更多
In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impac...In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.展开更多
The existing problems in toughened resin evaluation technology, particularly the disadvantage of the toughened resin identification method by CAI, is pointed out based on the point of view of composite structure desi...The existing problems in toughened resin evaluation technology, particularly the disadvantage of the toughened resin identification method by CAI, is pointed out based on the point of view of composite structure design. It is proposed to evaluate the toughness of composites by both damage resistance and damage tolerance. Seven different toughness composites are investigated by impact and quasi\|static indentation tests. Based on experimental data analysis, the parameter that is most sensitive to the damage resistance is determined as the damage parameter. The parameter to evaluate the damage resistance and its measuring method are proposed.展开更多
A constitutive model for composite laminated plates with the damage effect of the intra-layers and inter-laminar interface is presented. The model is based on the general six-degrees-of-freedom plate theory, the disco...A constitutive model for composite laminated plates with the damage effect of the intra-layers and inter-laminar interface is presented. The model is based on the general six-degrees-of-freedom plate theory, the discontinuity of displacement on the interfaces are depicted by three shape functions, which are formulated according to solutions satisfying three equilibrium equations, By using the variation principle, the three-dimensional non-linear equilibrium differential equations of the laminated plates with two different damage models are derived. Then, considering a simply supported laminated plate with damage, an analytical solution is presented using finite difference method to obtain the inter-laminar stresses.展开更多
A general anisotropic damage theory of cracked laminates is formulated here.The deformation of composite laminates is composed of matrix elastic strains,pseudo-elastic damage strains due to cracking and permanent dama...A general anisotropic damage theory of cracked laminates is formulated here.The deformation of composite laminates is composed of matrix elastic strains,pseudo-elastic damage strains due to cracking and permanent damage strains due to interlaminar slip.The surface of damage initiation is constructed accord- ing to the concept of linear elastic fracture mechanics for the virgin material.After the initial damage,a pesudo-elastic damage can be used to describe the damage behaviour if interlaminar slip is negligible.Damage evolution,load induced anisotropy and interlaminar-intralaminar interaction for composite laminates are exam- ined;the latter can perturb the normality structure of damage strain rate.Explicit expressions are given for pseudo-elastic (or secant) moduli of the damaging composite laminates,under a non-interacting assumption imposed on the cracks between different families.展开更多
Laser ultrasonic technique has received increasing attentions in the past decade due to its contactless nature and a wide range of applications have been reported. In this review,applications of laser ultrasonic techn...Laser ultrasonic technique has received increasing attentions in the past decade due to its contactless nature and a wide range of applications have been reported. In this review,applications of laser ultrasonic technique developed at Nanjing University of Aeronautics and Astronautics(NUAA)as well as elsewhere for non-destructive testing in composite laminates are presented. The principles of generating and detecting in a laser ultrasonic system are introduced,three different system configurations are also introduced with each configuration's advantages and disadvantages explained. More importantly,two major applications developed at NUAA for composite laminates are presented including damage detection,stiffness reconstruction and fatigue life prediction. Both applications are realized by a fixed-point PZT sensor and scanning pulse laser based on the linear reciprocal theorem. Analytical method and numerical models are employed and developed to realize the functionalities.展开更多
Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investi...Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investigate compressive properties of composite laminates after low velocity impact, three dimensional dynamic finite element method (FEM) was used to simulate low-velocity impact damage of 2 kinds of composite laminates firstly. Damage distributions and projective damage areas of the laminates were predicted under two impact energy levels. The analyzed damage after impact was considered to be the initial damage of the laminates under compressive loads. Then three dimensional static FEM was used to simulate the compressive failure process and to calculate residual compressive strengths of the impact damaged laminates. It is achieved to simulate the whole process from initial low-velocity impact damage to final compressive failure of composite laminates. Compared with experimental results, it shows that the numerical predicting results agree with the test results fairly well.展开更多
To address the issue that B_(4)C ceramics are difficult to be wetted by aluminum metals in the composites,TiB_(2)was introduced via an in-situ reaction between TiH_(2)and B_(4)C to regulate their wettability and inter...To address the issue that B_(4)C ceramics are difficult to be wetted by aluminum metals in the composites,TiB_(2)was introduced via an in-situ reaction between TiH_(2)and B_(4)C to regulate their wettability and interfacial bonding.By pressure infiltration of the molten alloy into the freeze-cast porous ceramic skeleton,the 2024Al/B_(4)C-TiB_(2)composites with a laminate-reticular hierarchical structure were produced.Compared with 2024Al/B_(4)C composite,adding initial TiH_(2)improved the flexural strength and valid fracture toughness from(484±27)to(665±30)MPa and(19.3±1.5)to(32.7±1.8)MPa·m^(1/2),respectively.This exceptional damage resistance ability was derived from multiple extrinsic toughening mechanisms including uncracked-ligament bridging,crack branching,crack propagation and crack blunting,and more importantly,the fracture model transition from single to multiple crack propagation.This strategy opens a pathway for improving the wettability and interfacial bonding of Al/B_(4)C composites,and thus produces nacre-inspired materials with optimized damage tolerance.展开更多
This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and(0/θ/0)composite laminates in fiber reinforced polymer(FRP)compo...This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and(0/θ/0)composite laminates in fiber reinforced polymer(FRP)composite laminates.The proposed damage detection model is developed based on a damage evolution mechanism,including crack initiation and crack damage progress in matrix,matrix-fiber interface and fibers.Research result demonstrates that the corresponding stiffness of unidirectional composite laminates is reduced as the number of loading cycles progresses.First,three common models in literatures are presented and compared.Tensile viscosity,Young’s modulus and ultimate tensile stress of composites are incorporated as key factors in this model and are modified in accordance with temperature.Four types of FRP composite property parameters,including Carbon Fiber Reinforced Polymer(CFRP),Aramid Fiber Reinforced Polymer(AFRP),Glass Fiber Reinforced Polymer(GFRP),and Basalt Fiber Reinforced Polymer(BFRP),are considered in this research,and a comparative parameter study of FRP unidirectional composite laminates with different off-angle plies using control variate method are discussed.It is concluded that the relationship between the drop in stiffness and the number of cycles also shows three different regions,following the mechanism of damage of FRP composites and the matrix is the dominant factor determined by temperature,while fiber strength is the dominant factor that determine the reliability of composite.展开更多
The aim of this study is to develop an appropriate modeling methodology for the simulation of intralaminar damage in laminated composites under complex loadings. The intralaminar damages are modeled by stiffness reduc...The aim of this study is to develop an appropriate modeling methodology for the simulation of intralaminar damage in laminated composites under complex loadings. The intralaminar damages are modeled by stiffness reduction controlled by thermodynamic forces as defined in continuum damage mechanics model proposed by Ladevèze. The original method neglected transverse stress in elementary plies during the tensile tests of [45/?45]mS laminates, resulting in variations of the identified damage parameters of Ladevèze model. This study compared the identified damage parameters considering transverse stress effects with those based on the original method. The effect of transverse stress in the identification process on the damage modeling is discussed, and it is found that one of damage coupling parameters and the damage master curves significantly depend on consideration of transverse stress effects. Finally, it is demonstrated that experimental stiffness degradation is well simulated by the prediction using the identified parameters considering transverse stress effects.展开更多
Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process...Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.展开更多
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the gener...By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.展开更多
Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectio...Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/...A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in ...Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs.展开更多
The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and ...The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.展开更多
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ...As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.展开更多
基金National Natural Science Foundation of China (50073002)
文摘On the basis ofa 2D 4-node Mindlin shell element method, a novel self-adapting delamination finite element method is presented, which is developed to model the delamination damage of composite laminates. In the method, the sublaminate elements are generated automatically when the delamination damage occurs or extends. Thus, the complex process and state of delamination damage can be simulated practically with high efficiency for both analysis and modeling. Based on the self-adapting delamination method, linear dynamic finite element damage analysis is performed to simulate the low-velocity impact damage process of three types of mixed woven composite laminates. Taking the frictional force among sublaminations during delaminating and the transverse normal stress into account, the analytical results are consistent with those of the experimental data.
基金supported by the National Natural Science Foundation of China(No.11072202)
文摘In order to effectively describe the progressively intralaminar and interlam- inar damage for composite laminates, a three dimensional progressive damage model for composite laminates to be used for low-velocity impact is presented. Being applied to three-dimensional (3D) solid elements and cohesive elements, the nonlinear damage model can be used to analyze the dynamic performance of composite structure and its failure be- havior. For the intralaminar damage, as a function of the energy release rate, the damage model in an exponential function can describe progressive development of the damage. For the interlaminar damage, the damage evolution is described by the framework of the continuum mechanics through cohesive elements. Coding the user subroutine VUMAT of the finite element software ABAQUS/Explicit, the model is applied to an example, i.e., carbon fiber reinforced epoxy composite laminates under low-velocity impact. It is shown that the prediction of damage and deformation agrees well with the experimental results.
基金Key L aboratory Foundation of National Defence( 0 0 JS49.3 .1.HK5 3 0 1)N ational Natural Science Foundation( 5 0 0 73 0 0 2)
文摘The existing problems in toughened resin evaluation technology, particularly the disadvantage of the toughened resin identification method by CAI, is pointed out based on the point of view of composite structure design. It is proposed to evaluate the toughness of composites by both damage resistance and damage tolerance. Seven different toughness composites are investigated by impact and quasi\|static indentation tests. Based on experimental data analysis, the parameter that is most sensitive to the damage resistance is determined as the damage parameter. The parameter to evaluate the damage resistance and its measuring method are proposed.
基金the National Natural Science Foundation of China(No.10572049).
文摘A constitutive model for composite laminated plates with the damage effect of the intra-layers and inter-laminar interface is presented. The model is based on the general six-degrees-of-freedom plate theory, the discontinuity of displacement on the interfaces are depicted by three shape functions, which are formulated according to solutions satisfying three equilibrium equations, By using the variation principle, the three-dimensional non-linear equilibrium differential equations of the laminated plates with two different damage models are derived. Then, considering a simply supported laminated plate with damage, an analytical solution is presented using finite difference method to obtain the inter-laminar stresses.
文摘A general anisotropic damage theory of cracked laminates is formulated here.The deformation of composite laminates is composed of matrix elastic strains,pseudo-elastic damage strains due to cracking and permanent damage strains due to interlaminar slip.The surface of damage initiation is constructed accord- ing to the concept of linear elastic fracture mechanics for the virgin material.After the initial damage,a pesudo-elastic damage can be used to describe the damage behaviour if interlaminar slip is negligible.Damage evolution,load induced anisotropy and interlaminar-intralaminar interaction for composite laminates are exam- ined;the latter can perturb the normality structure of damage strain rate.Explicit expressions are given for pseudo-elastic (or secant) moduli of the damaging composite laminates,under a non-interacting assumption imposed on the cracks between different families.
基金partially supported by the National Natural Science Foundation of China (Nos. 51875277,51805261)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(No. MCMS-I0518K01)
文摘Laser ultrasonic technique has received increasing attentions in the past decade due to its contactless nature and a wide range of applications have been reported. In this review,applications of laser ultrasonic technique developed at Nanjing University of Aeronautics and Astronautics(NUAA)as well as elsewhere for non-destructive testing in composite laminates are presented. The principles of generating and detecting in a laser ultrasonic system are introduced,three different system configurations are also introduced with each configuration's advantages and disadvantages explained. More importantly,two major applications developed at NUAA for composite laminates are presented including damage detection,stiffness reconstruction and fatigue life prediction. Both applications are realized by a fixed-point PZT sensor and scanning pulse laser based on the linear reciprocal theorem. Analytical method and numerical models are employed and developed to realize the functionalities.
文摘Compressive properties of composite laminates after low velocity impact are one of the most serious circumstances that must be taken into account in damage tolerance design of composite structures. In order to investigate compressive properties of composite laminates after low velocity impact, three dimensional dynamic finite element method (FEM) was used to simulate low-velocity impact damage of 2 kinds of composite laminates firstly. Damage distributions and projective damage areas of the laminates were predicted under two impact energy levels. The analyzed damage after impact was considered to be the initial damage of the laminates under compressive loads. Then three dimensional static FEM was used to simulate the compressive failure process and to calculate residual compressive strengths of the impact damaged laminates. It is achieved to simulate the whole process from initial low-velocity impact damage to final compressive failure of composite laminates. Compared with experimental results, it shows that the numerical predicting results agree with the test results fairly well.
基金financially supported by the National Natural Science Foundation of China(Nos.51502053,52072091,51621091)Heilongjiang Touyan Team,China。
文摘To address the issue that B_(4)C ceramics are difficult to be wetted by aluminum metals in the composites,TiB_(2)was introduced via an in-situ reaction between TiH_(2)and B_(4)C to regulate their wettability and interfacial bonding.By pressure infiltration of the molten alloy into the freeze-cast porous ceramic skeleton,the 2024Al/B_(4)C-TiB_(2)composites with a laminate-reticular hierarchical structure were produced.Compared with 2024Al/B_(4)C composite,adding initial TiH_(2)improved the flexural strength and valid fracture toughness from(484±27)to(665±30)MPa and(19.3±1.5)to(32.7±1.8)MPa·m^(1/2),respectively.This exceptional damage resistance ability was derived from multiple extrinsic toughening mechanisms including uncracked-ligament bridging,crack branching,crack propagation and crack blunting,and more importantly,the fracture model transition from single to multiple crack propagation.This strategy opens a pathway for improving the wettability and interfacial bonding of Al/B_(4)C composites,and thus produces nacre-inspired materials with optimized damage tolerance.
文摘This paper introduces a stiffness reduction based model developed by the authors to characterize accumulative fatigue damage in unidirectional plies and(0/θ/0)composite laminates in fiber reinforced polymer(FRP)composite laminates.The proposed damage detection model is developed based on a damage evolution mechanism,including crack initiation and crack damage progress in matrix,matrix-fiber interface and fibers.Research result demonstrates that the corresponding stiffness of unidirectional composite laminates is reduced as the number of loading cycles progresses.First,three common models in literatures are presented and compared.Tensile viscosity,Young’s modulus and ultimate tensile stress of composites are incorporated as key factors in this model and are modified in accordance with temperature.Four types of FRP composite property parameters,including Carbon Fiber Reinforced Polymer(CFRP),Aramid Fiber Reinforced Polymer(AFRP),Glass Fiber Reinforced Polymer(GFRP),and Basalt Fiber Reinforced Polymer(BFRP),are considered in this research,and a comparative parameter study of FRP unidirectional composite laminates with different off-angle plies using control variate method are discussed.It is concluded that the relationship between the drop in stiffness and the number of cycles also shows three different regions,following the mechanism of damage of FRP composites and the matrix is the dominant factor determined by temperature,while fiber strength is the dominant factor that determine the reliability of composite.
文摘The aim of this study is to develop an appropriate modeling methodology for the simulation of intralaminar damage in laminated composites under complex loadings. The intralaminar damages are modeled by stiffness reduction controlled by thermodynamic forces as defined in continuum damage mechanics model proposed by Ladevèze. The original method neglected transverse stress in elementary plies during the tensile tests of [45/?45]mS laminates, resulting in variations of the identified damage parameters of Ladevèze model. This study compared the identified damage parameters considering transverse stress effects with those based on the original method. The effect of transverse stress in the identification process on the damage modeling is discussed, and it is found that one of damage coupling parameters and the damage master curves significantly depend on consideration of transverse stress effects. Finally, it is demonstrated that experimental stiffness degradation is well simulated by the prediction using the identified parameters considering transverse stress effects.
文摘Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.
基金the National Natural Science Foundation of China (10572049)Hunan Provincial Natural Science Foundation of China (07JJ3009)National 985 Special Foundation of China
文摘By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general sixdegrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
基金the Science and Technology Programs of Gansu Province(Grant Nos.21JR1RA248,23YFGA0050)the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant Nos.2020039,2020017)+2 种基金the Special Funds for Guiding Local Scientific and Technological Development by the Central Government(Grant No.22ZY1QA005)the National Natural Science Foundation of China(Grant No.72361019)the Gansu Provincial Outstanding Graduate Students Innovation Star Program(Grant No.2023CXZX-574).
文摘Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades(referred to as blades),this paper takes the main beam structure of the blade with a rectangular cross-sectionas the simulation object and establishes a composite laminate rectangular beam structure that simultaneouslyincludes the flange,web,and adhesive layer,referred to as the blade main beam sub-structure specimen,throughthe definition of blade sub-structures.This paper examines the progressive damage evolution law of the compositelaminate rectangular beam utilizing an improved 3D Hashin failure criterion,cohesive zone model,B-K failurecriterion,and computer simulation technology.Under static loading,the layup angle of the anti-shear web hasa close relationship with the static load-carrying capacity of the composite laminate rectangular beam;under fatigueloading,the fatigue damage will first occur in the lower flange adhesive area of the whole composite laminaterectangular beam and ultimately result in the fracture failure of the entire structure.These results provide a theoreticalreference and foundation for evaluating and predicting the fatigue performance of the blade main beamstructure and even the full-size blade.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金Funded by the Hebei Province Natural Science Foundation (No.E2017203043)National Natural Science Foundation of China(No.U1604251)。
文摘A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672097,11772113)。
文摘Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The chaotic dynamic snap-through and complex nonlinear vibrations are investigated in a rectangular asymmetric cross-ply bistable composite laminated cantilever shell,in cases of 1:2 inter-well internal resonance and primary resonance.The transverse foundation excitation is applied to the fixed end of the structure,and the other end is in a free state.The first-order approximate multiple scales method is employed to perform the perturbation analysis on the dimensionless two-degree-of-freedom ordinary differential motion control equation.The four-dimensional averaged equations are derived in both polar and rectangular coordinate forms.Deriving from the obtained frequency-amplitude and force-amplitude response curves,a detailed analysis is conducted to examine the impacts of excitation amplitude,damping coefficient,and tuning parameter on the nonlinear internal resonance characteristics of the system.The nonlinear softening characteristic is exhibited in the upper stable-state,while the lower stable-state demonstrates the softening and linearity characteristics.Numerical simulation is carried out using the fourth-order Runge-Kutta method,and a series of nonlinear response curves are plotted.Increasing the excitation amplitude further elucidates the global bifurcation and chaotic dynamic snap-through characteristics of the bistable cantilever shell.
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
基金supported by the Xi’an Key Laboratory of Geotechnical and Underground Engineering Open Fund Project (XKLGUEKF20-03)the Natural Science Basic Research Program of Shaanxi Province General Project-Youth Project(2024JC-YBQN-0258)。
文摘As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.