Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. ...Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.展开更多
The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepar...The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.展开更多
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit...A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.展开更多
Influence of fabric geometrical parameters,including the number of filling yarns per 10 cm,yarn twist and fiber type,on bonding of the fabric reinforced cement composites is studied by fabric pull-out test and SEM mic...Influence of fabric geometrical parameters,including the number of filling yarns per 10 cm,yarn twist and fiber type,on bonding of the fabric reinforced cement composites is studied by fabric pull-out test and SEM microstructure analysis.The results show that the bonding strength increase with the increase of the number of filling yarns per 10 cm in the range of this study.But the influence of fabric count on the interfacial bonding is dual and there is a critical value.The twist of yarns has a little effect on the bonding strength and interfacial bonding behaves of nylon fabric reinforced cement composites.There is an optimum twist range.Within this range,the bonding strength increase slowly with the increase of yarn twist.Beyond this range,it is versus.The bonding strength is strongly affected by the fabric character.The bonding between the nylon fiber fabric and cement is good;that of between glass fiber fabric and cement is moderate and that of between the carbon fiber fabric and cement is poor.展开更多
Bone-like nanohydroxyapatite powders (b-nanoHA) were synthesized in simulated body fluid (SBF). The b-nanoHA, gelatin (Gel) and Polyvinyl Alcohol (PVA) were used to prepare bone-like composites (b-nanoHA/ Gel/PVA) at ...Bone-like nanohydroxyapatite powders (b-nanoHA) were synthesized in simulated body fluid (SBF). The b-nanoHA, gelatin (Gel) and Polyvinyl Alcohol (PVA) were used to prepare bone-like composites (b-nanoHA/ Gel/PVA) at room temperature. Characterizations of b-nanoHA powders and b-nanoHA/Gel/PVA composites were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Bending strength and compressive strength of the composite were tested. It was found that microstructure of the b-nanoHA powders was whisker shape and its crystalline degree was low similar to natural bone, bending strength and compressive strength of the b-nanoHA/Gel/PVA composite depended on the mixing ratio of HA, Gel and PVA, and also PVA could induce the network formation in the b-nanoHA/Gel/ PVA composite.展开更多
Quality 9Al_2O_3-2B_2O_3 whisker reinforced 6061Al or Al composites have been prepared by technique of squeeze casting.The mechanical properties of the 9Al_2O_3·2B_2O_3(w)/6061Al composites could be hardly improv...Quality 9Al_2O_3-2B_2O_3 whisker reinforced 6061Al or Al composites have been prepared by technique of squeeze casting.The mechanical properties of the 9Al_2O_3·2B_2O_3(w)/6061Al composites could be hardly improved by T6 treatment,owing to cause the remarkable interracial reaction.An observation under high resolution trans- mission electron microscope on interfaces shows that the serious chemical reaction occurs and the product is Al_2MgO_4.But no such reaction is found at the interfaces of 9Al_2O_3. 2B_2O_3(w)/Al composite.EDS analysis on the interfaces shows that above mentioned interracial reaction may be resulted from the interracial segregation of Mg atoms in 6061Al matrix during sequeeze casting.展开更多
Porous Cu-Sn-Ti alumina composites were fabricated by sintering Cu-Sn-Ti alloy powders, graphite particles, and alumina hollow particles agent. The effects of the pore structure and distribution on the composites stre...Porous Cu-Sn-Ti alumina composites were fabricated by sintering Cu-Sn-Ti alloy powders, graphite particles, and alumina hollow particles agent. The effects of the pore structure and distribution on the composites strength were evaluated. Different pore distributions were modeled by using finite element analysis to investigate the tensile strength of the composites. Furthermore, a fractal analysis-based box-covering algorithm was used on the Cu-Sn-Ti alumina composites topology graphs to better investigate the pore structure and distribution. Results obtained show that different sizes and concentrations of alumina hollow particles could result in different porosities from20% to 50%. A larger pore size and a higher pore concentration reduce the strength, but provide more space for chip formation as a bonding material of a grinding wheel. The body-centered pore structure of the composites shows the highest stress under a tension load. The original composites topology graphs have been transformed to ordered distributed pore graphs based on the total pore area conservation. The information dimension magnitude difference between the original topology graphs and the ordered distributed circulars graphs is found to be linear with the Cu-Sn-Ti alumina composites strength. A larger difference renders a lower flexural strength, which indicates that uniform ordered distributed pores could benefit the composites strength.展开更多
A recent study published in Nature Communications introduces a novel mechanically-mediated reaction involving ZnO nanoparticles that autonomously react,forming Zn/S mineral microrods within an organogel.These microrod...A recent study published in Nature Communications introduces a novel mechanically-mediated reaction involving ZnO nanoparticles that autonomously react,forming Zn/S mineral microrods within an organogel.These microrods selectively reinforce synthetic polymer composites,offering a unique approach to material strength-ening.The method provides a distinctive pathway for mechanical mineralization in composite materials.展开更多
To obtain a good combination of strength and ductility, a laminated composite structure composed of recovered hard lamellae and soft recrystallized lamellae has been produced in a single phase austenitic Fe-34.5 Mn-0....To obtain a good combination of strength and ductility, a laminated composite structure composed of recovered hard lamellae and soft recrystallized lamellae has been produced in a single phase austenitic Fe-34.5 Mn-0.04C steel by cold rolling and partial recrystallization. Enhanced mechanical properties in both strength and ductility have been obtained in the composite structure compared to a fully recrystallized coarse grain structure. A further increase in strength with only minor loss in total elongation has been achieved by a slight cold rolling of the composite structure, which also removes the small yield drop and Luders elongation observed in the composite structure.展开更多
The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverabl...The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.展开更多
The dual-phase Re_(0.5)MoNbW(TaC)_(0.5) composite,consisting of refractory body-centered cubic(BCC)highentropy alloy and carbide with many fine eutectic structures,was successfully synthesized by arc melting.The phase...The dual-phase Re_(0.5)MoNbW(TaC)_(0.5) composite,consisting of refractory body-centered cubic(BCC)highentropy alloy and carbide with many fine eutectic structures,was successfully synthesized by arc melting.The phase stability,high-temperature mechanical properties and strengthening mechanism of the ascast composite were studied.The microstructure of the composite remained stable after annealing at 1300℃for 168 h.It exhibited remarkably high-temperature strength,yield strength~901 MPa,and true ultimate compressive strength~1186 MPa at 1200℃.The BCC phase and carbide exhibited a semi-coherent interface with good bonding after severe deformation at 1200℃.The dipolar dislocation walls in BCC phase,restricted dynamic interaction between defects in carbide,and the pinning effect of semi-coherent interface offered effective strengthening effects.展开更多
Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional propert...Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional properties are required.Herein,carbon-matrix composites reinforced by Si_(3)N_(4)nanowires@pyrolytic carbon nanolayers(Si_(3)N_(4nws)@PyCnls)coupled with hydroxyapatite nanosheets is reported.The Si_(3)N_(4nws)@PyCnls(SP)with coaxial structure could increase the surface roughness of Si_(3)N_(4nws)and promote the stress transfer to the carbon matrix,whereas the porous hydroxyapatite nanosheets favor the infiltration of the carbon matrix and promote the interfacial bonding between the SP and carbon matrix.The carbon matrix composites reinforced by SP coupled with hydroxyapatite nanosheets(Si_(3)N_(4nws)@PyCnls-HA-C)exhibit excellent mechanical strength.Compare with the conventional Si_(3)N_(4nws)reinforced carbon composites,Si_(3)N_(4nws)@PyCnls-HA-C(SPHC)have 162%and 249%improvement in flexural strength and elastic modulus,respectively.Moreover,the friction coefficient and wear rate decreased by 53%and 23%,respectively.This study provides a co-reinforcement strategy generated by SP coupled with hydroxyapatite nanosheets for effective improvement of mechanical and frictional properties of carbon matrix composites that are used for aerospace and military industry applications.展开更多
In order to increase both the interfacial strength and interphase region strength between TiNi wires and shape memory epoxy,a novel interface structure including aminated CNTs was designed.The morphology shows that af...In order to increase both the interfacial strength and interphase region strength between TiNi wires and shape memory epoxy,a novel interface structure including aminated CNTs was designed.The morphology shows that after electroplating and etching,continuous and homogeneous concave-convex layers form on the surface of astreated TiNi wires,meanwhile aminated CNTs were planted on the surface which could react with shape memory epoxy at the interface region.The interfacial shear strength increases first with the CNT content rising but then a dramatic drop happens,and the maximum is obtained at CNT content of 0.6 g·L^(-1),which is about twice the result of acid etching TiNi wires.展开更多
In this study,a high impact resistant multi-layered composite consisting of continuous carbon fibre/nylon(CCF)and short carbon fibre/nylon(SCF)layers is developed via 3D printing technology.The effect of CCF/SCF layer...In this study,a high impact resistant multi-layered composite consisting of continuous carbon fibre/nylon(CCF)and short carbon fibre/nylon(SCF)layers is developed via 3D printing technology.The effect of CCF/SCF layers configuration on the impact resistance is investigated by low-velocity impact test,and the impact failure mechanism of the 3D printed composites is explored by microscopic observations and finite element(FE)simulation analysis.The results show that the 3D printed multi-layered composite with SCF layers distributed in the middle(HFA)exhibits higher impact resistant performance than the specimens with alternating SCF/CCF layers(HFB)and CCF layers distributed in the middle(HFC).The effect of CCF/SCF layers proportion on the impact performance is also studied by FE simulation,and the results show that the specimen with a CCF/SCF proportion of 7.0 exhibits the highest impact strength.展开更多
In order to construct quasi-continuously networked reinforcement in titanium(Ti)matrix composites,in this study,Ti-6 Al-4 V spherical powders were uniformly coated with a graphene nanosheet(GNS)layer by high energy ba...In order to construct quasi-continuously networked reinforcement in titanium(Ti)matrix composites,in this study,Ti-6 Al-4 V spherical powders were uniformly coated with a graphene nanosheet(GNS)layer by high energy ball milling and then consolidated by spark plasma sintering.Results showed that the GNS layer on the powder surface inhibited continuous metallurgy bonding between powders during sintering,which led to the formation of quasi-networked hybrid reinforcement structure consisting of insitu Ti C and remained GNSs.The networked GNSs/Ti64 composite possessed noticeably higher tensile strength but similar ductility to the Ti64 alloy,leading to both better tensile strength and ductility than the GNSs/Ti composite with randomly dispersed GNSs and Ti C.The formation mechanism and the fracture mechanism of the networked hybrid reinforcement were discussed.The results provided a method to fabricate Ti matrix composites with high strength and good ductility.展开更多
A study on ultrahigh strength steel plate subjected to novel thermo-mechanical control process was presented. The mechanical properties examination showed that the investigated steel exhibited excellent combination of...A study on ultrahigh strength steel plate subjected to novel thermo-mechanical control process was presented. The mechanical properties examination showed that the investigated steel exhibited excellent combination of ultra-high strength( 2 200 MPa) and toughness( 26 J). The microstructure of the experimental steel was observed by scanning electron microscope and transmission electron microscope. Desired martensitic lath with width of about 180- 250 nm was obtained. Nanostructured carbide precipitates with sizes of 20-50 nm,which contained Nb,Ti and Mo,were observed in the lath martensitic microstructure,and confirmed to be MC-type carbides with B1 structure by means of selected area electron diffraction.The compositional characteristics revealed by energy dispersive X-ray spectrometer mapping implied that the carbide forming elements Nb,Ti and Mo distributed in the precipitates evenly. Three-dimensional atom probe tomography reconstruction further indicated that Mo incorporated into the precipitates without enrichment in the carbide-matrix interface and probably substituted for Nb and Ti to form the( Nb,Ti,Mo) C carbides.展开更多
This paper introduces the design and fabrication of a smart and Hybrid Composite Finger(HCF)to achieve finger-like motions,such as holding and tapping motions.Bionic research on tapping motion of the index finger was ...This paper introduces the design and fabrication of a smart and Hybrid Composite Finger(HCF)to achieve finger-like motions,such as holding and tapping motions.Bionic research on tapping motion of the index finger was conducted to obtain its structural and tapping parameters.The HCF,actuated by Shape Memory Alloy(SMA)wires,possesses a hybrid structure which is composed of a rigid structure to be its metacarpal part and a deformable structure to produce bending movement just like the function of the finger.Owing to an adhesive bonding technology,the HCF was fabricated with a composite structure which is reliable under impulsive responses,and had a worklife of more than 630000 times.A bending model was built by synthesizing the phase transformation dynamic model of the SMA wires and quasi-static analysis of the HCF.Structural optimization of the HCF was conducted by synthesizing the bending model together with experimental analyses.To produce a holding motion like as the finger,a holding heating strategy was proposed to adaptively heat the HCF to keep holding state based on the resistance feedback of SMA wires and a Proportion Differentiation(PD)algorithm.Besides,we used an impulsive heating method to heat the HCF to produce a high fidelity tapping motion with a maximum tapping force(6.83 N)at a response time(43 ms)which considerably coincided with those(about 5.8 N,45 ms)from tapping bionics of the index finger.Finally,a soft prosthetic hand system which had a hand-like appearance was manufactured based on the HCFs and several tests like as anthropomorphic gesture motions and human-like tapping motions to tap a keyboard were conducted to prove potential application of the HCF.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20274028,50373030 and 20490220)This work is also partly supported by Ministry of Education of China for Doctoral Degree(No.20020610004).
文摘Polyoxymethylene (POM)/elastomer/filler ternary composites were prepared, in which thermoplastic polyurethane (TPU) and inorganic filler, namely, CaCO3, were used to achieve balanced mechanical properties of POM. The dispersion and phase morphology of POM/elastomer/filler composites were found to depend largely on processing method, CaCO3 content in masterbatch and the filler size. Two processing methods were employed to prepare POM/elastomer/filler ternary composites. One is called the one-step method, in which elastomer and the filler directly melt blended with POM matrix. The other is called the two-step method, in which the elastomer and the filler were mixed to get masterbatch first, which was then melt blended with pure POM of different content. The effect of phase morphology and processing method on impact strength was investigated. It was found that the two-step method results in an increase in impact strength but not for the one-step method. Additionally, the impact strength of POM ternary composites decreases with the increase in the size of CaCO3 particles.
基金supported by the National Natural Science Foundation of China(Grant No.52105577)the Natural Science Foundation of Zhejiang Province(Grant Nos.LQ22E050001 and LQ21E080007)+1 种基金the Natural Science Foundation of Ningbo(Grant Nos.2021J088 and 2023J376)the Ningbo Yongjiang Talent Introduction Program(Grant No.2021A-137-G).
文摘The development of tissue engineering and regeneration research has created new platforms for bone transplantation.However,the preparation of scaffolds with good fiber integrity is challenging,because scaffolds prepared by traditional printing methods are prone to fiber cracking during solvent evaporation.Human skin has an excellent natural heat-management system,which helps to maintain a constant body temperature through perspiration or blood-vessel constriction.In this work,an electrohydrodynamic-jet 3D-printing method inspired by the thermal-management system of skin was developed.In this system,the evaporation of solvent in the printed fibers can be adjusted using the temperature-change rate of the substrate to prepare 3D structures with good structural integrity.To investigate the solvent evaporation and the interlayer bonding of the fibers,finite-element analysis simulations of a three-layer microscale structure were carried out.The results show that the solvent-evaporation path is from bottom to top,and the strain in the printed structure becomes smaller with a smaller temperaturechange rate.Experimental results verified the accuracy of these simulation results,and a variety of complex 3D structures with high aspect ratios were printed.Microscale cracks were reduced to the nanoscale by adjusting the temperature-change rate from 2.5 to 0.5℃s-1.Optimized process parameters were selected to prepare a tissue engineering scaffold with high integrity.It was confirmed that this printed scaffold had good biocompatibility and could be used for bone-tissue regeneration.This simple and flexible 3D-printing method can also help with the preparation of a wide range of micro-and nanostructured sensors and actuators.
基金Project(SS2015AA031101)supported by the National High-tech R&D Program of China
文摘A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.
基金the Education Fund of Zhejiang Province(No.20030758)
文摘Influence of fabric geometrical parameters,including the number of filling yarns per 10 cm,yarn twist and fiber type,on bonding of the fabric reinforced cement composites is studied by fabric pull-out test and SEM microstructure analysis.The results show that the bonding strength increase with the increase of the number of filling yarns per 10 cm in the range of this study.But the influence of fabric count on the interfacial bonding is dual and there is a critical value.The twist of yarns has a little effect on the bonding strength and interfacial bonding behaves of nylon fabric reinforced cement composites.There is an optimum twist range.Within this range,the bonding strength increase slowly with the increase of yarn twist.Beyond this range,it is versus.The bonding strength is strongly affected by the fabric character.The bonding between the nylon fiber fabric and cement is good;that of between glass fiber fabric and cement is moderate and that of between the carbon fiber fabric and cement is poor.
文摘Bone-like nanohydroxyapatite powders (b-nanoHA) were synthesized in simulated body fluid (SBF). The b-nanoHA, gelatin (Gel) and Polyvinyl Alcohol (PVA) were used to prepare bone-like composites (b-nanoHA/ Gel/PVA) at room temperature. Characterizations of b-nanoHA powders and b-nanoHA/Gel/PVA composites were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Bending strength and compressive strength of the composite were tested. It was found that microstructure of the b-nanoHA powders was whisker shape and its crystalline degree was low similar to natural bone, bending strength and compressive strength of the b-nanoHA/Gel/PVA composite depended on the mixing ratio of HA, Gel and PVA, and also PVA could induce the network formation in the b-nanoHA/Gel/ PVA composite.
文摘Quality 9Al_2O_3-2B_2O_3 whisker reinforced 6061Al or Al composites have been prepared by technique of squeeze casting.The mechanical properties of the 9Al_2O_3·2B_2O_3(w)/6061Al composites could be hardly improved by T6 treatment,owing to cause the remarkable interracial reaction.An observation under high resolution trans- mission electron microscope on interfaces shows that the serious chemical reaction occurs and the product is Al_2MgO_4.But no such reaction is found at the interfaces of 9Al_2O_3. 2B_2O_3(w)/Al composite.EDS analysis on the interfaces shows that above mentioned interracial reaction may be resulted from the interracial segregation of Mg atoms in 6061Al matrix during sequeeze casting.
基金financially co-supported by the National Natural Science Foundation of China (Nos. 51235004 and 51375235)the Fundamental Research Funds for the Central Universities (Nos. NE2014103 and NZ2016107)
文摘Porous Cu-Sn-Ti alumina composites were fabricated by sintering Cu-Sn-Ti alloy powders, graphite particles, and alumina hollow particles agent. The effects of the pore structure and distribution on the composites strength were evaluated. Different pore distributions were modeled by using finite element analysis to investigate the tensile strength of the composites. Furthermore, a fractal analysis-based box-covering algorithm was used on the Cu-Sn-Ti alumina composites topology graphs to better investigate the pore structure and distribution. Results obtained show that different sizes and concentrations of alumina hollow particles could result in different porosities from20% to 50%. A larger pore size and a higher pore concentration reduce the strength, but provide more space for chip formation as a bonding material of a grinding wheel. The body-centered pore structure of the composites shows the highest stress under a tension load. The original composites topology graphs have been transformed to ordered distributed pore graphs based on the total pore area conservation. The information dimension magnitude difference between the original topology graphs and the ordered distributed circulars graphs is found to be linear with the Cu-Sn-Ti alumina composites strength. A larger difference renders a lower flexural strength, which indicates that uniform ordered distributed pores could benefit the composites strength.
基金financially supported by grants from the National Natural Science Foundation of China(Nos.12272032,12332019 and U20A20390)the Beijing Natural Science Foundation(No.L234020)the 111 Project(No.B13003).
文摘A recent study published in Nature Communications introduces a novel mechanically-mediated reaction involving ZnO nanoparticles that autonomously react,forming Zn/S mineral microrods within an organogel.These microrods selectively reinforce synthetic polymer composites,offering a unique approach to material strength-ening.The method provides a distinctive pathway for mechanical mineralization in composite materials.
基金support from the National Natural Foundation of Hebei Province,China(Grant No.E2018203312)support of State Key Research and Development Program of MOST of China(2016YFB0700401)support of the 111 Project(B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China
文摘To obtain a good combination of strength and ductility, a laminated composite structure composed of recovered hard lamellae and soft recrystallized lamellae has been produced in a single phase austenitic Fe-34.5 Mn-0.04C steel by cold rolling and partial recrystallization. Enhanced mechanical properties in both strength and ductility have been obtained in the composite structure compared to a fully recrystallized coarse grain structure. A further increase in strength with only minor loss in total elongation has been achieved by a slight cold rolling of the composite structure, which also removes the small yield drop and Luders elongation observed in the composite structure.
文摘The article considers one of the possible approaches to the solution of an urgent issue of metal consumption reduction, increase of operating life and maximum operating temperature as well as reduction of irrecoverable losses of platinum products and alloys when operating under high temperature conditions, particularly for glassblowing and single crystal growing crucibles. A two-layered composite material based on platinum-group metals and corundum plasma ceramics is thoroughly investigated. A successful experience of crucibles exploitation, designed for production of high temperature optical glasses from the composite and results of the research on composite material specimens are described.
基金supported by the State Key Program of National Natural Science Foundation of China[Grant No.51932006]National Natural Science Foundation of China[Grant No.51521001]+3 种基金the“111”Project[Grant No.B13035]the Joint Fund[Grant No.6141A02022255]the major program of specialized technological innovation of Hubei Province,China[Grant No.2019AFA176]support from China Scholarship Council(No.201906950060)。
文摘The dual-phase Re_(0.5)MoNbW(TaC)_(0.5) composite,consisting of refractory body-centered cubic(BCC)highentropy alloy and carbide with many fine eutectic structures,was successfully synthesized by arc melting.The phase stability,high-temperature mechanical properties and strengthening mechanism of the ascast composite were studied.The microstructure of the composite remained stable after annealing at 1300℃for 168 h.It exhibited remarkably high-temperature strength,yield strength~901 MPa,and true ultimate compressive strength~1186 MPa at 1200℃.The BCC phase and carbide exhibited a semi-coherent interface with good bonding after severe deformation at 1200℃.The dipolar dislocation walls in BCC phase,restricted dynamic interaction between defects in carbide,and the pinning effect of semi-coherent interface offered effective strengthening effects.
基金his work was supported by the National Natural Science Foundation of China under Grant Nos.51872232the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.136-QP-2015),the“111”project of China(B08040)+1 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates(Grand No.S202010699336)Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067).
文摘Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional properties are required.Herein,carbon-matrix composites reinforced by Si_(3)N_(4)nanowires@pyrolytic carbon nanolayers(Si_(3)N_(4nws)@PyCnls)coupled with hydroxyapatite nanosheets is reported.The Si_(3)N_(4nws)@PyCnls(SP)with coaxial structure could increase the surface roughness of Si_(3)N_(4nws)and promote the stress transfer to the carbon matrix,whereas the porous hydroxyapatite nanosheets favor the infiltration of the carbon matrix and promote the interfacial bonding between the SP and carbon matrix.The carbon matrix composites reinforced by SP coupled with hydroxyapatite nanosheets(Si_(3)N_(4nws)@PyCnls-HA-C)exhibit excellent mechanical strength.Compare with the conventional Si_(3)N_(4nws)reinforced carbon composites,Si_(3)N_(4nws)@PyCnls-HA-C(SPHC)have 162%and 249%improvement in flexural strength and elastic modulus,respectively.Moreover,the friction coefficient and wear rate decreased by 53%and 23%,respectively.This study provides a co-reinforcement strategy generated by SP coupled with hydroxyapatite nanosheets for effective improvement of mechanical and frictional properties of carbon matrix composites that are used for aerospace and military industry applications.
基金financially supported by the National Natural Science Foundation of China(No.51201014)。
文摘In order to increase both the interfacial strength and interphase region strength between TiNi wires and shape memory epoxy,a novel interface structure including aminated CNTs was designed.The morphology shows that after electroplating and etching,continuous and homogeneous concave-convex layers form on the surface of astreated TiNi wires,meanwhile aminated CNTs were planted on the surface which could react with shape memory epoxy at the interface region.The interfacial shear strength increases first with the CNT content rising but then a dramatic drop happens,and the maximum is obtained at CNT content of 0.6 g·L^(-1),which is about twice the result of acid etching TiNi wires.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(Grant No.11625210)the National Science Foundation of China(Grant No.51873153)+1 种基金the Shanghai Pujiang Program(Grant No.19PJ1410000)the Shanghai International Science and Technology Cooperation Fund Project(Grant No.19520713000).
文摘In this study,a high impact resistant multi-layered composite consisting of continuous carbon fibre/nylon(CCF)and short carbon fibre/nylon(SCF)layers is developed via 3D printing technology.The effect of CCF/SCF layers configuration on the impact resistance is investigated by low-velocity impact test,and the impact failure mechanism of the 3D printed composites is explored by microscopic observations and finite element(FE)simulation analysis.The results show that the 3D printed multi-layered composite with SCF layers distributed in the middle(HFA)exhibits higher impact resistant performance than the specimens with alternating SCF/CCF layers(HFB)and CCF layers distributed in the middle(HFC).The effect of CCF/SCF layers proportion on the impact performance is also studied by FE simulation,and the results show that the specimen with a CCF/SCF proportion of 7.0 exhibits the highest impact strength.
基金financially supported by the Key Research and Development Plan of Shaanxi Province(No.2020KW-034)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021058)。
文摘In order to construct quasi-continuously networked reinforcement in titanium(Ti)matrix composites,in this study,Ti-6 Al-4 V spherical powders were uniformly coated with a graphene nanosheet(GNS)layer by high energy ball milling and then consolidated by spark plasma sintering.Results showed that the GNS layer on the powder surface inhibited continuous metallurgy bonding between powders during sintering,which led to the formation of quasi-networked hybrid reinforcement structure consisting of insitu Ti C and remained GNSs.The networked GNSs/Ti64 composite possessed noticeably higher tensile strength but similar ductility to the Ti64 alloy,leading to both better tensile strength and ductility than the GNSs/Ti composite with randomly dispersed GNSs and Ti C.The formation mechanism and the fracture mechanism of the networked hybrid reinforcement were discussed.The results provided a method to fabricate Ti matrix composites with high strength and good ductility.
基金Item Sponsored by High Technology Research and Development Program of China(2012AA03A508)
文摘A study on ultrahigh strength steel plate subjected to novel thermo-mechanical control process was presented. The mechanical properties examination showed that the investigated steel exhibited excellent combination of ultra-high strength( 2 200 MPa) and toughness( 26 J). The microstructure of the experimental steel was observed by scanning electron microscope and transmission electron microscope. Desired martensitic lath with width of about 180- 250 nm was obtained. Nanostructured carbide precipitates with sizes of 20-50 nm,which contained Nb,Ti and Mo,were observed in the lath martensitic microstructure,and confirmed to be MC-type carbides with B1 structure by means of selected area electron diffraction.The compositional characteristics revealed by energy dispersive X-ray spectrometer mapping implied that the carbide forming elements Nb,Ti and Mo distributed in the precipitates evenly. Three-dimensional atom probe tomography reconstruction further indicated that Mo incorporated into the precipitates without enrichment in the carbide-matrix interface and probably substituted for Nb and Ti to form the( Nb,Ti,Mo) C carbides.
基金This work was supported by the National Natural Science Foundation of China(Nos.61773358 and 51705495).
文摘This paper introduces the design and fabrication of a smart and Hybrid Composite Finger(HCF)to achieve finger-like motions,such as holding and tapping motions.Bionic research on tapping motion of the index finger was conducted to obtain its structural and tapping parameters.The HCF,actuated by Shape Memory Alloy(SMA)wires,possesses a hybrid structure which is composed of a rigid structure to be its metacarpal part and a deformable structure to produce bending movement just like the function of the finger.Owing to an adhesive bonding technology,the HCF was fabricated with a composite structure which is reliable under impulsive responses,and had a worklife of more than 630000 times.A bending model was built by synthesizing the phase transformation dynamic model of the SMA wires and quasi-static analysis of the HCF.Structural optimization of the HCF was conducted by synthesizing the bending model together with experimental analyses.To produce a holding motion like as the finger,a holding heating strategy was proposed to adaptively heat the HCF to keep holding state based on the resistance feedback of SMA wires and a Proportion Differentiation(PD)algorithm.Besides,we used an impulsive heating method to heat the HCF to produce a high fidelity tapping motion with a maximum tapping force(6.83 N)at a response time(43 ms)which considerably coincided with those(about 5.8 N,45 ms)from tapping bionics of the index finger.Finally,a soft prosthetic hand system which had a hand-like appearance was manufactured based on the HCFs and several tests like as anthropomorphic gesture motions and human-like tapping motions to tap a keyboard were conducted to prove potential application of the HCF.
基金the financial support of the National Natural Science Foundation of China (Nos. 52071191, 52201077)the Natural Science Foundation of Shandong Province, China (No. ZR2022QE191)Talent Introduction and Research Start-up Fund of Shandong University of Science and Technology, China (No. 0104060510124)。