This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing para...This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding ...The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234.The out-of-plane compression and shear tests were conducted.Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures.Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures.展开更多
Concrete-filled rectangular steel tubular(CFRST)composite truss bridge is a new type of structure composed of a CFRST truss and concrete deck slab.This new type of bridge has the advantages of high structural force-tr...Concrete-filled rectangular steel tubular(CFRST)composite truss bridge is a new type of structure composed of a CFRST truss and concrete deck slab.This new type of bridge has the advantages of high structural force-transferring efficiency,rapid assembly construction speed and excellent total life cycle,which meets the construction concept of green,recyclable and sustainable development.Due to the broad application prospects,experiment on the flexural behavior of CFRST composite truss bridge in the negative moment region was reported by authors previously.This paper thus presents a finite element analysis(FEA)modelling verified by the reported test data to further investigate the detailed analytical behavior of this structure.The structural response and failure mechanism of CFRST composite truss beam in the negative moment region are studied.In addition,the important structural design parameters on the flexural performance of the CFRST composite truss beam are also investigated,including the height to span ratio,the brace-to-chord wall thickness ratio,the reinforcement ratio of steel reinforcements and prestressed tendons and the strength grade of concrete infill in chords.Finally,the reasonable structural design parameters range are proposed for the optimum design of the CFRST composite truss bridge.展开更多
To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,on...To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,one cast-in-site concrete slab of ordinary concrete and one CCS of ordinary concrete by steel bar truss(as recommended in the technical specification for precast concrete structures in Chinese)were compared through experiments.The carrying capacity,flexural behaviour and bi-directional mechanical properties of the specimens were systematically analyzed from the failure modes,load-deflection curves,load-bar strain curves,load-slip curves and crack distributions.Results show that the bending failure process of CCSs with a SFRRAC base plate is similar to that of the cast-in-site concrete slab of ordinary concrete and CCS of ordinary concrete by steel bar truss,as all of them went through the plastic phase,elastic plastic phase and failure phase with fully developed cracks and deflection.No sudden breakage or horizontal cracking of the connecting interface between the base plate and concrete topping was observed.The shape of the base plate has a major impact on the bearing capacity of the CCS with the SFRRAC base plate.When calculating the ultimate bearing capacity with the plastic yield line theory,the influence of the base plate shape on the plastic yield line position should be taken into account.展开更多
Composite truss with hollow structural section(HSS) members is deemed as the structure applicable to large-span and heavily-loaded bridges. To promote the application of composite truss bridge with HSS members in Chin...Composite truss with hollow structural section(HSS) members is deemed as the structure applicable to large-span and heavily-loaded bridges. To promote the application of composite truss bridge with HSS members in China, this paper described its structural characteristics and technology in details. Besides, not only were 32 typical design cases of composite truss bridges with HSS members collected, but also the corresponding historical development was summed up. Comparisons on structural components, characteristics and engineering applications were made among composite truss bridges with HSS members in different structural forms. Then, the analysis on the characteristics of composite truss bridges with concrete-filled steel tubular(CFST) chords was conducted, and the challenges on the aspects of complicated joints and interfacial debonding were pointed out. To address these problems, the concrete-filled rectangular hollow section(CFRHS)stiffened with PBLs(Perfobond Ribs) was proposed to improve the reliability of confinement effect in CFST member and force transfer in joints. The advantages on the mechanical properties of CFRHS structure stiffened using PBLs were systematically expounded with respect to the behaviors of steel plate, interface, member and joint. Moreover, the structure design, construction technology, structural calculation and economic efficiency of the practical bridge with CFRHS chords stiffened using PBLs were comprehensively analyzed.The results demonstrated that composite truss bridge with PBL-stiffened CFRHS members was competitive in mechanical performance and construction.展开更多
The truss cable support technology was put forward to control the large mining height and composite mudstone strata roadway. This technique makes the steady rock in roadway slantwise top be anchor points, makes the tr...The truss cable support technology was put forward to control the large mining height and composite mudstone strata roadway. This technique makes the steady rock in roadway slantwise top be anchor points, makes the truss cable be steady support structure through special implement, and supplied rock in anchor area with horizontal and vertical pressure which strengthens the surrounding rock's anti-strain capability, so it can solve the support problem in roadway with the large cross section and large mining height with mudstone strata. The support mechanism of truss cable about how to make the soft strata stabilize is analyzed by use of the mechanical method. Based on the mechanism and numerical simulation method, the truss cable support project was designed and used to the large mining setting room in eleventh mining area of Bailong Mine successfully.展开更多
基金National Science and Technology Support Program Subtopics Under Grant No.2006BAJ03A10-07Changjiang Scholars Program of China
文摘This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金supported by the National Natural Science Foundation of China under Grant Nos.90816024 and 10872059the Major State Basic Research Development Program of China under Grant No. 2011CB610303+2 种基金the Fundamental Research Funds for the central Universities grant No. HIT. NSRIF. 2010069the Program of Excellent Team in Harbin Institute of Technologythe Program for New Century Excellent Talents in University under Grant No.NCET-08-0152
文摘The mechanical performance of an all-composite pyramidal lattice truss core sandwich structure was investigated both theoretically and experimentally.Sandwich structures were fabricated with a hot compression molding method using carbon fiber reinforced composite T700/3234.The out-of-plane compression and shear tests were conducted.Experimental results showed that the all-composite pyramidal lattice truss core sandwich structures were more weight efficient than other metallic lattice truss core sandwich structures.Failure modes revealed that node rupture dominated the mechanical behavior of sandwich structures.
基金sponsored by the National Natural Science Foundation of China(No.52008026)Natural Science Basic Research Program of Shaanxi(No.2021JQ-272)the Fundamental Research Funds for the Central Universities(No.300102219310,No.300102211303)。
文摘Concrete-filled rectangular steel tubular(CFRST)composite truss bridge is a new type of structure composed of a CFRST truss and concrete deck slab.This new type of bridge has the advantages of high structural force-transferring efficiency,rapid assembly construction speed and excellent total life cycle,which meets the construction concept of green,recyclable and sustainable development.Due to the broad application prospects,experiment on the flexural behavior of CFRST composite truss bridge in the negative moment region was reported by authors previously.This paper thus presents a finite element analysis(FEA)modelling verified by the reported test data to further investigate the detailed analytical behavior of this structure.The structural response and failure mechanism of CFRST composite truss beam in the negative moment region are studied.In addition,the important structural design parameters on the flexural performance of the CFRST composite truss beam are also investigated,including the height to span ratio,the brace-to-chord wall thickness ratio,the reinforcement ratio of steel reinforcements and prestressed tendons and the strength grade of concrete infill in chords.Finally,the reasonable structural design parameters range are proposed for the optimum design of the CFRST composite truss bridge.
基金The National Natural Science Foundation of China(No.51578446).
文摘To promote the application of green renewable materials in concrete composite slabs(CCSs)and study the flexural behavior of CCSs with different shapes,the bending performances of three CCSs with a SFRRAC base plate,one cast-in-site concrete slab of ordinary concrete and one CCS of ordinary concrete by steel bar truss(as recommended in the technical specification for precast concrete structures in Chinese)were compared through experiments.The carrying capacity,flexural behaviour and bi-directional mechanical properties of the specimens were systematically analyzed from the failure modes,load-deflection curves,load-bar strain curves,load-slip curves and crack distributions.Results show that the bending failure process of CCSs with a SFRRAC base plate is similar to that of the cast-in-site concrete slab of ordinary concrete and CCS of ordinary concrete by steel bar truss,as all of them went through the plastic phase,elastic plastic phase and failure phase with fully developed cracks and deflection.No sudden breakage or horizontal cracking of the connecting interface between the base plate and concrete topping was observed.The shape of the base plate has a major impact on the bearing capacity of the CCS with the SFRRAC base plate.When calculating the ultimate bearing capacity with the plastic yield line theory,the influence of the base plate shape on the plastic yield line position should be taken into account.
基金funded by National Key R&D Program of China (Grant No. 2016YFC0701202)the National Natural Science Foundation of China (Grant No. 51508027)
文摘Composite truss with hollow structural section(HSS) members is deemed as the structure applicable to large-span and heavily-loaded bridges. To promote the application of composite truss bridge with HSS members in China, this paper described its structural characteristics and technology in details. Besides, not only were 32 typical design cases of composite truss bridges with HSS members collected, but also the corresponding historical development was summed up. Comparisons on structural components, characteristics and engineering applications were made among composite truss bridges with HSS members in different structural forms. Then, the analysis on the characteristics of composite truss bridges with concrete-filled steel tubular(CFST) chords was conducted, and the challenges on the aspects of complicated joints and interfacial debonding were pointed out. To address these problems, the concrete-filled rectangular hollow section(CFRHS)stiffened with PBLs(Perfobond Ribs) was proposed to improve the reliability of confinement effect in CFST member and force transfer in joints. The advantages on the mechanical properties of CFRHS structure stiffened using PBLs were systematically expounded with respect to the behaviors of steel plate, interface, member and joint. Moreover, the structure design, construction technology, structural calculation and economic efficiency of the practical bridge with CFRHS chords stiffened using PBLs were comprehensively analyzed.The results demonstrated that composite truss bridge with PBL-stiffened CFRHS members was competitive in mechanical performance and construction.
文摘The truss cable support technology was put forward to control the large mining height and composite mudstone strata roadway. This technique makes the steady rock in roadway slantwise top be anchor points, makes the truss cable be steady support structure through special implement, and supplied rock in anchor area with horizontal and vertical pressure which strengthens the surrounding rock's anti-strain capability, so it can solve the support problem in roadway with the large cross section and large mining height with mudstone strata. The support mechanism of truss cable about how to make the soft strata stabilize is analyzed by use of the mechanical method. Based on the mechanism and numerical simulation method, the truss cable support project was designed and used to the large mining setting room in eleventh mining area of Bailong Mine successfully.