The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the add...The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.展开更多
A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of sol...A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.展开更多
This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile...This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.展开更多
In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this co...In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.展开更多
Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites we...Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.展开更多
In order to improve the interface bonding of SiCp/AZ61 composites prepared by powder metallurgy followed by hot extrusion, the electroless plating of Ni-P coating on SiCp was carried out. The influence of Ni coating o...In order to improve the interface bonding of SiCp/AZ61 composites prepared by powder metallurgy followed by hot extrusion, the electroless plating of Ni-P coating on SiCp was carried out. The influence of Ni coating on microstructure and mechanical properties of the composites was analyzed. The results show that SiC particles distribute more uniformly in the composites after surface Ni plating and there are fewer defects in Ni-coated composite. The Ni coating reacts with the magnesium matrix forming the Mg2Ni interfacial compound layer during the sintering process. The relative density of the composite increases from 97.9% to 98.4% compared with uncoated one and the hardness of the Ni-coated composite increases more rapidly as the volume fraction of SiCp increases. The tensile test results show that the tensile strength increases from 320 to 336 MPa when the volume friction of SiC particle is 9% and the Ni-coated composites have larger elongation, indicating that Ni coating improves the interfacial bonding strength and the performance of the composites. In addition, the fracture properties of SiCp/AZ61 composites were analyzed.展开更多
A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of th...A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.展开更多
The influences of new,scrap,and five modified Mo fibers on interface bonding strength of fiber-matrix and mechanical strength of RMC were studied.Typical specimens with different fibers and mass ratio of resin and har...The influences of new,scrap,and five modified Mo fibers on interface bonding strength of fiber-matrix and mechanical strength of RMC were studied.Typical specimens with different fibers and mass ratio of resin and hardener were prepared to verify the above assumptions.Theoretical analysis and experimental results prove that,compared with ordinary new Mo fibers,scrap Mo fibers can perform better in improving interface bonding strength and mechanical properties of RMC because many discharge pits randomly distribute on the surface of scrap fibers.For five modified Mo fibers,interface bonding strength and the reinforcing effect on RMC have been improved obviously.Wherein,comprehensive mechanical properties of RMC are optimal with the addition of M6 fibers which have undergone combined surface treatment including acidification,gas-phase oxidation and coupling treatment.And interface bonding strength between M6 fiber and matrix is the maximum.展开更多
In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure invest...In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.展开更多
Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 606...Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region.展开更多
Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bon...Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.展开更多
Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure ...Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.展开更多
Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temper...Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment.展开更多
Ti/Al/Mg laminated composites were successfully fabricated by hot roll bonding.The effects of the rolling reduction on the microstructural evolution and mechanical properties of the composites were explored.The result...Ti/Al/Mg laminated composites were successfully fabricated by hot roll bonding.The effects of the rolling reduction on the microstructural evolution and mechanical properties of the composites were explored.The results show that Ti/Al/Mg laminated sheets exhibit good interfacial bonding.The rolling reduction has a significant effect on the deformation inhomogeneity through the thickness of the Al layer.The initial grains of the Al layer near the Ti/Al interface are fragmented into fine equiaxed grains,and the grains at the center and near the Al/Mg interface are elongated.The R-cube shear texture of the Al layer forms near the Ti/Al interface and permeates into the center layer in the samples with greater rolling reductions.The b-fiber rolling texture of the Al layer is observed near the Al/Mg interface and increases with the increase of rolling reduction.The stress–strain curves indicate that the fracture appears first in the Mg layer.With the increasing rolling reduction,the ultimate tensile and yield strength values increase,and the elongation up to the Mg layer fracture decreases.展开更多
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times fro...Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.展开更多
The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process...The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint.展开更多
The effect of pyrocarbon(PyC) concentration on the thermal physical and mechanical properties of quasi 3dimensional carbon fiber fabrics reinforced pitch-based carbon matrix composites was investigated.As the PyC conc...The effect of pyrocarbon(PyC) concentration on the thermal physical and mechanical properties of quasi 3dimensional carbon fiber fabrics reinforced pitch-based carbon matrix composites was investigated.As the PyC concen-tration increased from 0 to 22.9vol.%,the tensile strength of pitch-based C/C(Carbon/Carbon) composites initially in-creased and then decreased,so was the tensile modulus.The coefficients of thermal expansion(CTE) were in the sequence of 10.2vol.%<0<22.9vol.%in Z direction.Under the same temperature conditions,PyC layer had a positive-going influence on the TC of the C/C composite,the composite with 22.9vol.%PyC concentrations possessed the highest TC value.The thermal shock resistance of the material with 10.2vol.%PyC concentrations showed the highest value.It is logical to conclude that by adding the a suitable PyC concentration into the carbon fabrics,thermo- mechanical properties,the major concerns for the safety design of load-bearing structural parts,can be tailored,which increase the reliability of pitch-based C/C composites as a structure unit.展开更多
The carbon fibers and the woven reinforced magnesium matrix composites were fabricated by pressure infiltration method.Effects of fiber species,fiber arrangement,hybrid particles and environment temperature on microst...The carbon fibers and the woven reinforced magnesium matrix composites were fabricated by pressure infiltration method.Effects of fiber species,fiber arrangement,hybrid particles and environment temperature on microstructures and properties of the composite were studied.Results showed that the mechanical properties at ambient temperature were affected by interfacial reaction.The magnesium matrix composites reinforced with graphite fibers showed higher strength and elastic modulus due to less interfacial reaction.During loading,the fibers were pulled out and the load was transferred through the interfaces,then the fiber bundles were fractured,finally the whole specimen failed.The introduction of hybrid SiC particles during fabrication can improve the mechanical properties of the magnesium matrix composites.Moreover,taking orthogonal carbon fiber woven as reinforcement can modify the anisotropy and reliability of materials.展开更多
Composite organohydrogels have been widely used in wearable electronics.However,it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofil...Composite organohydrogels have been widely used in wearable electronics.However,it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions.Here,multifunctional nanofiber composite reinforced organohydrogels(NCROs)are prepared.The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding.Simultaneously,the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength(up to 7.38±0.24 MPa),fracture strain(up to 941±17%),toughness(up to 31.59±1.53 MJ m~(-3))and fracture energy(up to 5.41±0.63 kJ m~(-2)).Moreover,the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance.Remarkably,owing to the organohydrogel stabilized conductive network,the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself.This work provides new ideas for the design of high-strength,tough,stretchable,anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51965040)Science and Technology Project of Jiangxi Provincial Department of Transportation,China(No.2022H0048)。
文摘The interfacial reaction behavior of Al and Ti_3AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_3AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_3AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_3AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_3AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%.
基金supported by the National Key Research and Development Program of China(No.2022YFB3707405)the Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110525)+1 种基金the National Natural Science Foundation of China(Nos.U22A20114 and 52301200)the Liaoning Revitalization Talents Program,China(No.XLYC2007009)。
文摘A high-zinc composite,12vol%SiC/Al-13.3 Zn-3.27 Mg-1.07Cu(wt%),with an ultra-high-strength of 781 MPa was success-fully fabricated through a powder metallurgy method,followed by an extrusion process.The effects of solid-solution and aging heat treat-ments on the microstructure and mechanical properties of the composite were extensively investigated.Compared with a single-stage sol-id-solution treatment,a two-stage solid-solution treatment(470℃/1 h+480℃/1 h)exhibited a more effective solid-solution strengthen-ing owing to the higher degree of solid-solution and a more uniform microstructure.According to the aging hardness curves of the com-posite,the optimized aging parameter(100℃/22 h)was determined.Reducing the aging temperature and time resulted in finer and more uniform nanoscale precipitates but only yielded a marginal increase in tensile strength.The fractography analysis revealed that intergranu-lar cracking and interface debonding were the main fracture mechanisms in the ultra-high-strength SiC/Al-Zn-Mg-Cu composites.Weak regions,such as the SiC/Al interface containing numerous compounds and the precipitate-free zones at the high-angle grain boundaries,were identified as significant factors limiting the strength enhancement of the composite.Interfacial compounds,including MgO,MgZn2,and Cu5Zn8,reduced the interfacial bonding strength,leading to interfacial debonding.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0707300)the Key Research and Development Program projects of Shandong(No.2020CXGC010304).
文摘This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.
文摘In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures.
基金Project(CXZZ20140506150310438)supported by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan Province,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Ti-coated SiCp particles were developed by vacuum evaporation with Ti to improve the interfacial bonding of SiCp/Al composites.Ti-coated SiC particles and uncoated SiC particles reinforced Al 2519 matrix composites were prepared by hot pressing,hot extrusion and heat treatment.The influence of Ti coating on microstructure and mechanical properties of the composites was analyzed by scanning electron microscopy(SEM)and energy dispersive spectroscopy(EDS).The results show that the densely deposited Ti coating reacts with SiC particles to form TiC and Ti5Si3 phases at the interface.Ti-coated SiC particle reinforced composite exhibits uniformity and compactness compared to the composite reinforced with uncoated SiC particles.The microstructure,relative density and mechanical properties of the composite are significantly improved.When the volume fraction is 15%,the hardness,fracture strain and tensile strength of the SiCp reinforced Al 2519 composite after Ti plating are optimized,which are HB 138.5,4.02%and 455 MPa,respectively.
基金Project(CXZZ20140506150310438)support by the Science and Technology Program of Shenzhen,ChinaProject(2017GK2261)supported by the Science and Technology Program of Hunan,ChinaProject(2017zzts111)supported by the Fundamental Research Funds for the Central Universities of Central South University,China
文摘In order to improve the interface bonding of SiCp/AZ61 composites prepared by powder metallurgy followed by hot extrusion, the electroless plating of Ni-P coating on SiCp was carried out. The influence of Ni coating on microstructure and mechanical properties of the composites was analyzed. The results show that SiC particles distribute more uniformly in the composites after surface Ni plating and there are fewer defects in Ni-coated composite. The Ni coating reacts with the magnesium matrix forming the Mg2Ni interfacial compound layer during the sintering process. The relative density of the composite increases from 97.9% to 98.4% compared with uncoated one and the hardness of the Ni-coated composite increases more rapidly as the volume fraction of SiCp increases. The tensile test results show that the tensile strength increases from 320 to 336 MPa when the volume friction of SiC particle is 9% and the Ni-coated composites have larger elongation, indicating that Ni coating improves the interfacial bonding strength and the performance of the composites. In addition, the fracture properties of SiCp/AZ61 composites were analyzed.
基金the financial support from Iran National Science Foundation (INSF) under grant number 95822903
文摘A facile and innovative method to improve bonding between the two parts of compound squeeze cast Al/Al-4.5 wt.%Cu macrocomposite bimetals was developed and its effects on microstructure and mechanical properties of the bimetal were investigated.A special concentric groove pattern was machined on the top surface of the insert(squeeze cast Al-4.5 wt.%Cu) and its effects on heat transfer,solidification and distribution of generated stresses along the interface region of the bimetal components were simulated using ProCAST and ANSYS softwares and experimentally verified. Simulation results indicated complete melting of the tips of the surface grooves and local generation of large stress gradient fields along the interface. These are believed to result in rupture of the insert interfacial aluminum oxide layer facilitating diffusion bonding of the bimetal components. Microstructural evaluations confirmed formation of an evident transition zone along the interface region of the bimetal. Average thickness of the transition zone and tensile strength of the bimetal were significantly increased to about 375 μm and 54 MPa, respectively, by applying the surface pattern.The proposed method is an affordable and promising approach for compound squeeze casting of Al-Al macrocomposite bimetals without resort to any prior cost and time intensive chemical or coating treatments of the solid insert.
基金Fouded by the National Natural Science Foundation of China(No.51175308)the National Science and Technology Major Project of China(No.2012ZX04010032)。
文摘The influences of new,scrap,and five modified Mo fibers on interface bonding strength of fiber-matrix and mechanical strength of RMC were studied.Typical specimens with different fibers and mass ratio of resin and hardener were prepared to verify the above assumptions.Theoretical analysis and experimental results prove that,compared with ordinary new Mo fibers,scrap Mo fibers can perform better in improving interface bonding strength and mechanical properties of RMC because many discharge pits randomly distribute on the surface of scrap fibers.For five modified Mo fibers,interface bonding strength and the reinforcing effect on RMC have been improved obviously.Wherein,comprehensive mechanical properties of RMC are optimal with the addition of M6 fibers which have undergone combined surface treatment including acidification,gas-phase oxidation and coupling treatment.And interface bonding strength between M6 fiber and matrix is the maximum.
文摘In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding(ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.
文摘Copper coating was deposited on the surface of aluminum borate whisker by an electroless plating method.This method was used to modify the interfacial property of squeeze-casting aluminum borate whisker reinforced 6061Al matrix composite.Interface observation indicates that the spinel reaction(MgAl2O4) is hindered by the copper coating,and the difference in interfacial reaction degree affects the tensile property and aging behavior of the composite.For the composite with less spinel reaction(MgAl2O4),its peak-aging process are postponed due to less depletion of magnesium.On the fracture surface of copper-coated composite dimples and fractures of whiskers are more,but on the fracture surface of uncoated composite pull-out of whiskers are more than that on the coated one.In uncoated composite the fracture generally originates from the near-interface-region.
基金Project(51671017)supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B3)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,ChinaProject(SKLSP201835)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,China
文摘Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.
文摘Al 7075 and Mg AZ31 alloys were joined by diffusion bonding method. Joining process was performed in pressure range of 10-35 MPa at temperatures of 430-450 ℃ for 60 min under a vacuum of 13.3 MPa. The microstructure evaluation, phase analysis and distribution of elements at the interface were done using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The pressure of 25 MPa was determined as the optimum pressure in which the minimum amount of plastic deformation takes place at the joint. Different reaction layers containing intermetallic compounds, such as Al12Mg17, Al3Mg2 andα(Al) solid solution, were observed, in interfacial transition zone (ITZ). Thickness of layers was increased with increasing the operating temperature. According to the results, diffusion of aluminum atoms into magnesium alloy was more and the interface movement towards the Al alloy was observed. The maximum bond strength of 38 MPa was achieved at the temperature of 440 ℃ and pressure of 25 MPa. Fractography studies indicated that the brittle fracture originated from Al3Mg2 phase.
基金financially supported by the National Natural Science Foundation of China (Nos.51671017 and 51471024)Fundamental Research Funds for the Central Universities (No.FRFBR-15-078A)
文摘Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment.
基金financial supports from the National Natural Science Foundation of China(No.51421001)the National High Technology Research and Development Program of China(863 Program,No.2013AA031304)+1 种基金the Fundamental Research Funds for the CentralUniversitiesofChina(2019CDQYCL001,2019CDCGCL204,2020CDJDPT001)the Research Project of State Key Laboratory of Vehicle NVH and Safety Technology of China(No.NVHSKL-201706)。
文摘Ti/Al/Mg laminated composites were successfully fabricated by hot roll bonding.The effects of the rolling reduction on the microstructural evolution and mechanical properties of the composites were explored.The results show that Ti/Al/Mg laminated sheets exhibit good interfacial bonding.The rolling reduction has a significant effect on the deformation inhomogeneity through the thickness of the Al layer.The initial grains of the Al layer near the Ti/Al interface are fragmented into fine equiaxed grains,and the grains at the center and near the Al/Mg interface are elongated.The R-cube shear texture of the Al layer forms near the Ti/Al interface and permeates into the center layer in the samples with greater rolling reductions.The b-fiber rolling texture of the Al layer is observed near the Al/Mg interface and increases with the increase of rolling reduction.The stress–strain curves indicate that the fracture appears first in the Mg layer.With the increasing rolling reduction,the ultimate tensile and yield strength values increase,and the elongation up to the Mg layer fracture decreases.
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
文摘Microstructures and mechanical properties of transient liquid phase (TLP) bonded magnesium metal matrix composite ( MMC) joints using copper interlayer have been investigated. With an increase of bonding times from 5 min to 50 min at bonding temperature of 510 ℃ , the average concentration of copper in the bonded zone decreased, the microstructure in the zone changed from Cu, α-Mg and CuMg2 to α-Mg, CuMg2 and TiC, and mechanical properties of the joint increased. The shear strength of the joint bonded at 510 ℃ for 50 min reached 64 MPa due to the metallurgical bonding of the joint and improving its homogeneity of composition and microstructure. It is favorable to increase the bonding time for improving mechanical properties of TLP bonded magnesium MMC joint.
文摘The formation process, microstructure and mechanical properties of transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joint with copper interlayer were investigated. The formation process of the TLP joint comprises a number of stages: plastic deformation and solid diffusion (stage 1), dissolution of interlayer and base metal (stage 2), isothermal solidification (stage 3) and homogenization (stage 4). The microstructure of the joint depends on the joint formation process (distinct stages). The plastic deformation and solid diffusion in stage 1 favoure the intimate contact at interfaces and liquid layer formation. The microstructure of joint consists of aluminium solid solution, alumina particle, Al 2Cu and MgAl 2O 4 compounds in stage 2. The most pronounced feature of joint microstructure in stage 3 is the alumina particle segregation in the center of the joint. The increase of joint shear strength with increasing bonding temperature is mainly attributed to improving the fluidity and wettability of liquid phase and decreasing the amount of Al 2Cu brittle phase in the joint. The principal reason of higher bonding temperature (>600 ℃) resulting in lowering obviously the joint shear strength is the widening of alumina particle segregation region that acts as a preferential site for failure. The increase of joint shear strength with increasing holding time is mainly associated with decreasing the amount of Al 2Cu brittle phase and promoting homogenization of joint.
文摘The effect of pyrocarbon(PyC) concentration on the thermal physical and mechanical properties of quasi 3dimensional carbon fiber fabrics reinforced pitch-based carbon matrix composites was investigated.As the PyC concen-tration increased from 0 to 22.9vol.%,the tensile strength of pitch-based C/C(Carbon/Carbon) composites initially in-creased and then decreased,so was the tensile modulus.The coefficients of thermal expansion(CTE) were in the sequence of 10.2vol.%<0<22.9vol.%in Z direction.Under the same temperature conditions,PyC layer had a positive-going influence on the TC of the C/C composite,the composite with 22.9vol.%PyC concentrations possessed the highest TC value.The thermal shock resistance of the material with 10.2vol.%PyC concentrations showed the highest value.It is logical to conclude that by adding the a suitable PyC concentration into the carbon fabrics,thermo- mechanical properties,the major concerns for the safety design of load-bearing structural parts,can be tailored,which increase the reliability of pitch-based C/C composites as a structure unit.
文摘The carbon fibers and the woven reinforced magnesium matrix composites were fabricated by pressure infiltration method.Effects of fiber species,fiber arrangement,hybrid particles and environment temperature on microstructures and properties of the composite were studied.Results showed that the mechanical properties at ambient temperature were affected by interfacial reaction.The magnesium matrix composites reinforced with graphite fibers showed higher strength and elastic modulus due to less interfacial reaction.During loading,the fibers were pulled out and the load was transferred through the interfaces,then the fiber bundles were fractured,finally the whole specimen failed.The introduction of hybrid SiC particles during fabrication can improve the mechanical properties of the magnesium matrix composites.Moreover,taking orthogonal carbon fiber woven as reinforcement can modify the anisotropy and reliability of materials.
基金financially supported by Natural Science Foundation of China(No.51873178)Qing Lan Project of Yangzhou University and Jiangsu Province+1 种基金High-end Talent Project of Yangzhou UniversityJiangsu Students'Innovation and Entrepreneurship Training Program(202211117059Z)。
文摘Composite organohydrogels have been widely used in wearable electronics.However,it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions.Here,multifunctional nanofiber composite reinforced organohydrogels(NCROs)are prepared.The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding.Simultaneously,the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength(up to 7.38±0.24 MPa),fracture strain(up to 941±17%),toughness(up to 31.59±1.53 MJ m~(-3))and fracture energy(up to 5.41±0.63 kJ m~(-2)).Moreover,the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance.Remarkably,owing to the organohydrogel stabilized conductive network,the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself.This work provides new ideas for the design of high-strength,tough,stretchable,anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.