期刊文献+
共找到6,335篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution of Phase Composition and Microstructure of Al_2O_3-Si-Al Composite at High Temperatures in Reducing Atmosphere 被引量:2
1
作者 LIU Xinhong YE Fangbao ZHONG Xiangchong 《China's Refractories》 CAS 2014年第4期32-35,共4页
Al2 O3-Si-Al composite specimens with the size of 25 mm × 25 mm × 125 mm were prepared using fused alumina (as aggregates and fines),ultra-fine α-Al2O3,Si and Al powders as starting materials,liquid pheno... Al2 O3-Si-Al composite specimens with the size of 25 mm × 25 mm × 125 mm were prepared using fused alumina (as aggregates and fines),ultra-fine α-Al2O3,Si and Al powders as starting materials,liquid phenol formaldehyde resin as the binder,pressing and heating at 800-1 500 ℃ for 3 h under carbon embedded condition.Evolution of phase composition and microstructure of Al2 O3-Si-Al composite during heating from 800 to 1 500 ℃ under carbon embedded condition were studied.The results show that:(1) Al4 C3,AlN and SiC are initially formed at 800-900 ℃ due to reactions of Al and Si with C or CO and N2 ; (2) at 1 000-1 300 ℃,the amounts of Al4C3,AlN and SiC increase with temperature rising and their crystals grow; (3) at 1 400-1 500 ℃,Al4 C3 and AlN disappear,and minor SiAlON crystals are observed; the nonoxide crystals develop well and they are interlaced in the corundum skeleton structure,which creates strengthening and toughening 展开更多
关键词 alumina-silicon-aluminum composite phase composition microstructure reducing atmosphere
下载PDF
Effects of Sinusoidal Vibration of Crystallization Roller on Composite Microstructure of Ti/Al Laminated Composites by Twin-Roll Casting
2
作者 李励 杜凤山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期196-205,共10页
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/... A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality. 展开更多
关键词 laminated composites sinusoidal vibration composite microstructure
下载PDF
Microstructures and Properties of FeAl-Fe_3AlC_(0.5) Composites Prepared by SHS Casting
3
作者 Jun DING Jun YANG +3 位作者 Qinling BI Jiqiang MA Weimin LIU Qunji XUE 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期733-736,共4页
FeAl composites with 21, 37 and 50 wt pct Fe3AlC0.5 were fabricated by a self-propagating high temperature synthesis (SHS) casting. Phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning ... FeAl composites with 21, 37 and 50 wt pct Fe3AlC0.5 were fabricated by a self-propagating high temperature synthesis (SHS) casting. Phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microhardness and bending strength of the composites were measured. The composites with 21 and 50 wt pct Fe3AlC0.5 mainly consisted of FeAl and FesAlC0.5 phases, whereas the composite with 37 wt pct Fe3AlC0.5 was composed of FeAl, Fe3AlC0.5 and graphite phases. The bonding of the reinforcement and the matrix was good. Hardness and bending strength of the composite with 37 wt pct Fe3AlC0.5 was lower than those of the 21 and 50 wt pct composites owing to the presence of the soft graphite phase. 展开更多
关键词 FeAl-Fe3AlC0.5 composites Iron aluminides Self-propagating high temperature synthesis shs casting microstructure Mechanical properties
下载PDF
Microstructure and ablation behavior of Zr-based ultra-high-temperature gradient composites
4
作者 Qing-hua LIU Tian TIAN +2 位作者 Wei SUN Hong-bo ZHANG Xiang XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2889-2899,共11页
To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th... To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm. 展开更多
关键词 reactive melt infiltration ceramic-matrix composites gradient material microstructure ablation property
下载PDF
Microstructure,interfacial reaction behavior,and mechanical properties of Ti_(3)AlC_(2)reinforced Al6061 composites
5
作者 Zhi-bin LIU Jia-bao BAO +1 位作者 Wen-jie HU Hong YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2756-2771,共16页
The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the a... The interfacial reaction behavior of Al and Ti_(3)AlC_(2)at different pouring temperatures and its effect on the microstructure and mechanical properties of the composites were investigated.The results show that the addition of3.0 wt.%Ti_(3)AlC_(2)refines the average grain size ofα(Al)in the composite by 50.1%compared to Al6061 alloy.Morphological analyses indicate that an in-situ Al_(3Ti)transition layer of-180 nm in thickness is generated around the edge of Ti_(3)AlC_(2)at 720℃,forming a well-bonded Al-Al_(3Ti)interface.At this processing temperature,the ultimate tensile strength of A16061-3.0 wt.%Ti_(3)AlC_(2)composite is 199.2 MPa,an improvement of 41.5%over the Al6061 matrix.Mechanism analyses further elucidate that 720℃is favourable for forming the nano-sized transition layer at the Ti_(3)AlC_(2)edges.And,the thermal mismatch strengthening plays a dominant role in this state,with a strengthening contribution of about 74.8%. 展开更多
关键词 Al6061 composites Ti_(3)AlC_(2) microstructure interfacial reaction tensile mechanical properties
下载PDF
Microstructure evolution,mechanical properties and fracture behavior of Al-xSi/AZ91D bimetallic composites prepared by a compound casting
6
作者 Guangyu Li Wenming Jiang +3 位作者 Feng Guan Junwen Zhu Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1944-1964,共21页
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically... In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL. 展开更多
关键词 Al/Mg bimetallic composites Si content Mg_(2)Si reinforcement microstructure Mechanical properties Fracture behavior
下载PDF
Investigation of Microstructure and Phase Composition of Chromic Oxide, AZS/Cr and High-alumina Refractories after Exposure of Basalt and Aluminaboronsilicate Glasses Melts
7
作者 Valeriy V.MARTYNENKO Iryna G.SHULYK +1 位作者 Yuliya Ye.MISHNYOVA Tetyana G.TYSHYNA 《China's Refractories》 CAS 2024年第1期1-6,共6页
The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the... The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated. 展开更多
关键词 high-alumina refractories chromic oxide refractories AZS/Cr refractories microstructure phase composition aluminaboronsilicate glasses melts basalt melt
下载PDF
Studies on Chemical Resistance of PET-Mortar Composites: Microstructure and Phase Composition Changes
8
作者 Ahmed Soufiane Benosman Mohamed Mouli +4 位作者 Hamed Taibi Mohamed Belbachir Yassine Senhadji Ilies Bahlouli David Houivet 《Engineering(科研)》 2013年第4期359-378,共20页
Researches into new and innovative uses of waste plastic materials are continuously advancing. These research efforts try to match society’s need for safe and economic disposal of waste materials. The use of recycled... Researches into new and innovative uses of waste plastic materials are continuously advancing. These research efforts try to match society’s need for safe and economic disposal of waste materials. The use of recycled plastic aggregates saves natural resources and dumping spaces, and helps to maintain a clean environment. The present articles deals with the resistance to chemical attack of polymer-mortars, which are often used as low-cost promising materials for preventing or repairing various reinforced concrete structures. To gain more knowledge on the efficiency of polymer-mortar composites, four mortar mixtures: one specimen with Portland cement and three mixtures with 2.5, 5, and 7.5 wt% of the substitution of cement by polyethylene terephthalate (PET) were exposed to the influence of aggressive environment (0.5%, 1% and 1.5% HCl acids, 10% NH4Cl, 5% H2SO4 acid and 10% (NH4)2SO4 solutions). The measurements of several properties were carried out, the results were analyzed and the combination of X-ray diffraction, FT-IR spectroscopy, differential thermal analysis (DTA), thermogravimetric (TG) analysis, differential scanning calorimetry (DSC) analysis and the composites were also observed by SEM led to the positive identification of the deterioration products’ formation. From this study, it was found that the addition of PET to the modified mortars, means reducing the penetration of aggressive agents. So, the PET-modified mortars exposed to aggressive environments showed better resistance to chemical attack. The new composites appear to offer an attractive low-cost material with consistent properties. The present study highlights the capabilities of the different methods for the analysis of composites and opened new way for the recycling of PET in polymer-mortars. 展开更多
关键词 composite Polymer-Mortar PET Waste Acids NH4CL ATTACK AMMONIUM-SULFATE ATTACK microstructure
下载PDF
Effect of HEA/Al composite interlayer on microstructure and mechanical property of Ti/Mg bimetal composite by solid-liquid compound casting 被引量:3
9
作者 Jin Cheng Jian-hua Zhao +3 位作者 Chun Wang Jing-jing Shangguan Cheng Gu Ya-jun Wang 《China Foundry》 SCIE CAS CSCD 2023年第1期1-11,共11页
In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HE... In this study,HEA/AI composite interlayer was used to fabricate Ti/Mg bimetal composites by solidliquid compound casting process.The Al layer was prepared on the surface of TC4 alloy by hot dipping,and the FeCoNiCr HEA layer was prepared by magnetron sputtering onto the Al layer.The influence of the HEA layer thickness and pouring temperature on interface evolution was investigated based on SEM observation and thermodynamic analysis.Results indicate that the sluggish diffusion effect of HEA can effectively inhibit the interfacial diffusion between Al and Mg,which is conducive to the formation of solid solution,especially when the thickness of HEA is 800 nm.With the increase of casting temperature from 720 ℃ to 730 ℃,740℃,and 750 ℃,α-Al(Mg),α-Al(Mg)+Al3Mg2,Al3Mg2+Al12Mg17,and Al12Mg17+δ-Mg are formed at the interface of Ti/Mg bimetal,respectively.When the thickness of the HEA layer is 800 nm and the pouring temperature is 720 ℃,the bonding strength of the Ti/Mg bimetal can reach the maximum of 93.6 MPa. 展开更多
关键词 Ti/Mg bimetal composite microstructure solid-liquid compound casting HEA/Al composite interlayer mechanical property
下载PDF
Squeeze casting for metal alloys and composites:An overview of influence of process parameters on mechanical properties and microstructure 被引量:3
10
作者 Osarue Osaruene Edosa Francis Kunzi Tekweme Kapil Gupta 《China Foundry》 SCIE CAS CSCD 2023年第2期148-158,共11页
Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum ca... Squeeze casting is a well-established and reliable process for fabricating high-integrity metallic alloys,bimetals,and composites.The quality and high performance of squeeze cast components are dependent on optimum casting conditions.Inappropriate selection of parameter values may adversely affect the quality of the casting.The squeeze cast components are generally subjected to secondary processing such as heat treatment,extrusion,and other bulk deformation processes to improve the microstructural features and mechanical properties.Heat treatment further refines the grains and reduces porosity,consequently improving tensile strength,and hardness;however,ductility decreases.This paper provides a comprehensive review on studies concerning the influence of processing parameters on porosity,density,percentage elongation,strength,hardness,wear,and fracture of squeeze casting alloys,aiming to provide sufficient information on the squeeze casting process and the effects of processing parameters on product quality. 展开更多
关键词 compositeS microstructure optimization POROSITY SOLIDIFICATION squeeze casting
下载PDF
Comparative investigation of microstructure and high-temperature oxidation resistance of high-velocity oxy-fuel sprayed CoNiCrAlY/nano-Al_(2)O_(3) composite coatings using satellited powders 被引量:2
11
作者 Pejman Zamani Zia Valefi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1779-1791,共13页
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida... Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure. 展开更多
关键词 MCrAlY coating CoNiCrAlY-Al_(2)O_(3)composite satellited feedstock microstructure high-temperature oxidation high-velocity oxy-fuel spraying
下载PDF
The aging behavior,microstructure and mechanical properties of AlN/AZ91 composite
12
作者 Yunxia Sun Changlin Yang +4 位作者 Bin Zhang Jianfeng Fan Hongxiang Li Tianhao Zhao Jing Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2458-2468,共11页
Microstructure evolution and mechanical properties of the aging treated AlN/AZ91 composites were systematically investigated by optical microscopy(OM),high resolution scanning electron microscopy(HRSEM)with an energy ... Microstructure evolution and mechanical properties of the aging treated AlN/AZ91 composites were systematically investigated by optical microscopy(OM),high resolution scanning electron microscopy(HRSEM)with an energy dispersive spectrum(EDS),and high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM).The results show that the higher fracture elongation(14±1%)and ultimate tensile strength(275±6 MPa)were simultaneously obtained in the peak-aged AlN/AZ91 composites.Comparied with AZ91 matrix alloy,the strength was increased by about 44%and the elongation was approximately five times higher,which mainly attributed to the precipitation of nano-sizedγ-Mg_(17)Al_(12)phase and the activation of non-basal slip systems induced by in-situ AlN particles at room temperature.However,the in-situ formation of AlN reinforcements consumed part of Al element in the matrix alloy,which resulted into the volume fraction decreasing ofγ-Mg_(17)Al_(12)precipitates,and then the age hardening and strengthening efficiency were reduced in the AlN/AZ91 composites.On the other hand,the mismatch of thermal expansion coefficient between AlN particles and AZ91 matrix generated high density dislocations around AlN particles,which promoted the precipitation ofγ-Mg_(17)Al_(12)phase,and then the peak aging time and temperature were decreased. 展开更多
关键词 Magnesium matrix composites In-situ AlN particles Aging behavior microstructure Mechanical properties
下载PDF
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
13
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 SiC composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
Microstructure and Mechanical Properties of ZrC_(x)-NbC_(y)-Cu Composites by Reactive Infiltration at 1300℃
14
作者 王东 XU Kai +1 位作者 WEI Boxin WANG Yujin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期52-58,共7页
ZrC_(x)-NbC_(y)-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1300℃.The effect of Zr content in the infiltrator on microstructure of the as-syn... ZrC_(x)-NbC_(y)-Cu composites were fabricated by pressure-less reactive infiltration of Zr-Cu binary melts into porous NbC preforms at 1300℃.The effect of Zr content in the infiltrator on microstructure of the as-synthesized composites was studied.Mechanical properties of the composites were reported.A partial displacement of Nb atoms in NbC by Zr atoms from Zr-Cu melt occurs during the reaction between Zr-Cu melt and porous NbC preform.The formation of a core-shell structure suggests the reaction is mainly a dissolutionprecipitation type.NbC dissolves into Zr-Cu melt,from which the(Nb,Zr)C_(z)phase precipitates and grows.With increasing Zr content in the Zr-Cu infiltrator,the reaction is enhanced and the infiltration is easily chocked.ZrC_(x)-NbC_(y)-Cu composite is synthesized using Zr_(14)Cu_(51)infiltrator.The flexural strength and fracture toughness of ZrC_(x)-NbC_(y)-Cu composite reach 637 MPa and 12.7 MPa·m^(1/2),respectively.And the improved toughness is probably attributed to residual Cu phase and plate-like Nb_(x)C_(y)phases. 展开更多
关键词 ZrC_(x)-NbC_(y)-Cu composite reactive melt infiltration microstructure mechanical properties
下载PDF
Effect of applied pressure on microstructure and mechanical properties of Mg-Zn-Y quasicrystal-reinforced AZ91D magnesium matrix composites prepared by squeeze casting 被引量:6
15
作者 杨玲 侯华 +1 位作者 赵宇宏 杨晓敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3936-3943,共8页
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves... The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening. 展开更多
关键词 magnesium matrix composite squeeze casting QUASICRYSTAL microstructure mechanical properties
下载PDF
Microstructures and properties of A356-10%SiC particle composite castings at different solidification pressures 被引量:6
16
作者 董普云 赵海东 +1 位作者 陈飞帆 李俊文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2222-2228,共7页
A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures... A356-based metal matrix composites with 10% SiC particles of 10 rtm were fabricated by stir casting and direct squeeze casting process under applied pressures of 0.1 (gravity), 25, 50 and 75 MPa. The microstructures and mechanical properties of the as-cast and T6 heat-treated castings were investigated. The results show that as the applied pressures increase, the casting defects as particle-porosity clusters reduce and the incorporation between the particles and matrix can be improved. The tensile strength, hardness, and coefficients of thermal expansion (CTE) increase with the increase of the pressures. Compared with the as-cast composite castings, the tensile strength and hardness of the heat-treated casting are improved whereas CTEs tend to decrease in T6-treated condition. For the gravity cast composites, there are some particle-porosity clusters on the fracture surface, and the clusters are hardly detected on the fracture surface of the samples solidified at the external pressures. Different fracture behaviors are found between the composites solidified at the gravity and imposed pressures. 展开更多
关键词 metal matrix composites squeeze casting microstructureS mechanical properties
下载PDF
Microstructure and thermophysical properties of SiC/Al composites mixed with diamond 被引量:6
17
作者 郭宏 韩媛媛 +2 位作者 张习敏 贾成厂 徐骏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期170-174,共5页
The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ... The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little. 展开更多
关键词 SiC/Al composites mixed with diamond thermal conductivity thermal expansion coefficient microstructure
下载PDF
Effect of NiAl content on phases and microstructures of TiC-TiB_2-NiAl composites fabricated by reaction synthesis 被引量:5
18
作者 崔洪芝 马丽 +2 位作者 曹丽丽 滕方磊 崔宁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期346-353,共8页
TiC-TiB2-NiAl composites were fabricated by self-propagating high temperature reaction synthesis(SHS) with Ti, B4C, Ni and Al powders as raw materials. The effects of NiAl content on phase constituents and microstru... TiC-TiB2-NiAl composites were fabricated by self-propagating high temperature reaction synthesis(SHS) with Ti, B4C, Ni and Al powders as raw materials. The effects of NiAl content on phase constituents and microstructures were investigated. The results show that the reaction products are composed of TiB2, TiC and NiAl. The content of NiAl increases with the adding of Ni+Al in green compacts. TiB2, TiC and NiAl grains present in different shapes in the matrix, TiB2 being in hexagonal or rectangular shapes, TiC in spherical shapes, and NiAl squeezed into the gaps of TiC and TiB2 grains. With the increase of NiAl content, the grains of TiC-TiB2-NiAl composites are refined, their density and compressive strength are improved, and the shapes of TiC grains become spherical instead of irregular ones. Finally, the fracture mechanism of the composites transforms from intergranular fracture mode to the compounded fracture mode of intergranular fracture and transgranular fracture. 展开更多
关键词 TiC-TiB2-NiAl TiC-TiB2-NiAl compositeS microstructure
下载PDF
Effect of solid carburization on surface microstructure and hardness of Ti-6Al-4V alloy and(TiB+La_2O_3)/Ti-6Al-4V composite 被引量:3
19
作者 段宏强 韩远飞 +3 位作者 吕维洁 毛建伟 王立强 张荻 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1871-1877,共7页
Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization a... Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization at 1227 K for 24 h. Microstructure and phase analysis indicated that TiC reinforcements and Ti-C solid solutions were introduced after solid carburization. Moreover, the volume fraction of equiaxedα-Ti phase in diffusion layer decreased obviously with increasing sample depth. Hardness testing results indicated that both the carburized surfaces performed significant improvement of about 100% in micro-hardness compared with untreated materials. The variation of carbon contents with increasing sample depth resulted in a hardened layer of 300 μm in the carburized samples. Meanwhile, slight influence on the internal microstructure and hardness indicated that solid carburization was an effective method in strengthening the surface of titanium alloy and titanium matrix composite. 展开更多
关键词 titanium alloy titanium matrix composite solid carburization microstructure micro-hardness
下载PDF
Microstructure and mechanical properties of AZ31-Mg_2Si in situ composite fabricated by repetitive upsetting 被引量:4
20
作者 郭炜 王渠东 +2 位作者 叶兵 周浩 刘鉴锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3755-3761,共7页
AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite ele... AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite element analysis of the material flow indicates that deformation concentrates in the bottom region of the sample after 1 pass, and much more uniform deformation is obtained after 5 passes. During multi-pass RU process, both dendritic and Chinese script type Mg2Si phases are broken up into smaller particles owing to the shear stress forced by the matrix. With the increasing number of RU passes, finer grain size and more homogeneous distribution of Mg2Si particles are obtained along with significant enhancement in both strength and ductility. AZ31-4.6%Mg2Si composite exhibits tensile strength of 284 MPa and elongation of 9.8%after 5 RU passes at 400 ℃ compared with the initial 128 MPa and 5.4%of original AZ31-4.6%Mg2Si composite. 展开更多
关键词 AZ31-Mg2Si composite Mg2Si particle repetitive upsetting microstructure mechanical properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部