A structural model of a soft/hard compositecoated textured (SHCCT) tool was proposed and substantiated by a three-dimensional numerical simulation. Its dry turning performance as applied to AISI-1045 steel was analyze...A structural model of a soft/hard compositecoated textured (SHCCT) tool was proposed and substantiated by a three-dimensional numerical simulation. Its dry turning performance as applied to AISI-1045 steel was analyzed via three-factor five-level orthogonal experiments for different coating parameters, including coating thickness, coating material, and thickness ratio of the soft and hard coatings. In addition, the cutting performance of the proposed SHCCT tool was compared with those of uncoated non-textured, coated non?textured, and uncoated textured tools, and its superiority was proved by the significant reductions in the cutting force, and specifically, the cutting temperature. The optimal results were provided by the SHCCT tool with a WS2/ZrN soft/hard composite coating, a 0.9:0.1 thickness ratio of the above ingredients, and a total coating thickness of 0.5 μm.展开更多
The preparation method of NiMo-RuO2 composite coating, micrographic surface feature and roughness factor of the coating, influence of content of RuO, on electrocatalytic activity, steady-state polarization curves and ...The preparation method of NiMo-RuO2 composite coating, micrographic surface feature and roughness factor of the coating, influence of content of RuO, on electrocatalytic activity, steady-state polarization curves and electrochemical parameters, and stability of the electrode in 30% KOH contaning 10×10-6Fe3+ were repored. Experement results showed the NiMo-RuO2 electrode has more excellent elec-trocatalytic activity and stability than NiMo electrode.展开更多
基金the National Natural Science Foundation of China (Grant No. 51505399)the Natural Science Foundation of Fujian Province of China (Grant No. 2017J05088)the Fundamental Research Funds for the Central Universities, Xiamen University (Grant No. 20720160078).
文摘A structural model of a soft/hard compositecoated textured (SHCCT) tool was proposed and substantiated by a three-dimensional numerical simulation. Its dry turning performance as applied to AISI-1045 steel was analyzed via three-factor five-level orthogonal experiments for different coating parameters, including coating thickness, coating material, and thickness ratio of the soft and hard coatings. In addition, the cutting performance of the proposed SHCCT tool was compared with those of uncoated non-textured, coated non?textured, and uncoated textured tools, and its superiority was proved by the significant reductions in the cutting force, and specifically, the cutting temperature. The optimal results were provided by the SHCCT tool with a WS2/ZrN soft/hard composite coating, a 0.9:0.1 thickness ratio of the above ingredients, and a total coating thickness of 0.5 μm.
文摘The preparation method of NiMo-RuO2 composite coating, micrographic surface feature and roughness factor of the coating, influence of content of RuO, on electrocatalytic activity, steady-state polarization curves and electrochemical parameters, and stability of the electrode in 30% KOH contaning 10×10-6Fe3+ were repored. Experement results showed the NiMo-RuO2 electrode has more excellent elec-trocatalytic activity and stability than NiMo electrode.