Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used rei...Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles,they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium(Ti). It has a high melting point, high Young’s modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti’s homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.展开更多
Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure an...Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure and mechanical properties of the composites was investigated. It was found that the composite prepared by PP-HP exhibits a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface and the degradation of the fibers caused by a higher processing temperature. On the contrary, the composite prepared by PIP shows a tough fracture behavior, which could be rationalized on the basis of a weakly bonded fiber/matrix interface as well as a higher strength retention of the fibers. As a result, in comparison with the composite prepared by PP-HP, the composite prepared by PIP achieves better mechanical properties with a flexural strength of 573.4 MPa and a fracture toughness of 17.2 MPa.m^1/2.展开更多
基金National Natural Science Foundation of China (52101123, 52171103)Guangdong Major Project of Basic and Applied Basic Research (2020B0301030006) for the support。
文摘Currently, many gratifying signs of progress have been made in magnesium(Mg) matrix composites(MMCs) by virtue of their high mechanical properties both at room and elevated temperatures. Although the commonly used reinforcements in MMCs are ceramic particles,they often provide improved yield and ultimate stresses by a significant loss in ductility. Therefore, hard metallic phases were introduced as alternative candidates for the manufacturing of MMCs, especially titanium(Ti). It has a high melting point, high Young’s modulus, high plasticity, low level of mutual solubility with Mg matrix, and closer thermal expansion coefficient to that of Mg metal than that of ceramic particles. It is highly preferable to provide both high ultimate stress and ductility in Mg matrix. However, many critical challenges for the fabrication of Ti-reinforced MMCs remain, such as Ti’s homogeneity, low recovery rate, and the optimization of interfacial bonding strength between Mg and Ti, etc. Meanwhile, different fabrication methods have various effects on the microstructures, mechanical properties, and the interfacial strength of Ti-reinforced MMCs. Hence, this review placed emphasis on the microstructural characteristics and mechanical properties of Ti-reinforced MMCs fabricated by different techniques. The influencing factors that govern the strengthening mechanisms were systematically compared and discussed. Future research trends, key issues, and prospects were also proposed to develop Ti-reinforced MMCs.
基金This research was financially supported by the National Natural Science Foundation of China (No. 50404012)
文摘Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure and mechanical properties of the composites was investigated. It was found that the composite prepared by PP-HP exhibits a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface and the degradation of the fibers caused by a higher processing temperature. On the contrary, the composite prepared by PIP shows a tough fracture behavior, which could be rationalized on the basis of a weakly bonded fiber/matrix interface as well as a higher strength retention of the fibers. As a result, in comparison with the composite prepared by PP-HP, the composite prepared by PIP achieves better mechanical properties with a flexural strength of 573.4 MPa and a fracture toughness of 17.2 MPa.m^1/2.