期刊文献+
共找到21,795篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructural characterization,tribological and corrosion behavior of AA7075-TiC composites
1
作者 Surendarnath Sundaramoorthy Ramesh Gopalan Ramachandran Thulasiram 《China Foundry》 SCIE EI CAS CSCD 2024年第4期334-342,共9页
Aluminum alloys are the potential materials in the automobile and aerospace sectors due to their lower density,easy forming and excellent corrosion resistance.The demand of high strength-to-weight ratio materials in s... Aluminum alloys are the potential materials in the automobile and aerospace sectors due to their lower density,easy forming and excellent corrosion resistance.The demand of high strength-to-weight ratio materials in structural applications needs the engineering industries to seek aluminum alloy with new versions of hard and brittle ceramic particles.The microstructure,hardness,wear and corrosion behaviors of AA7075 composites with 2.5wt.%and 5wt.%TiC particles were studied.Microscopic analysis is evident that the transformation of the strong dendritic morphology to non-dendritic morphology on the incorporation of TiC into AA7075.Furthermore,the precipitation of the second-phase compounds such as Al_(2)CuMg,Al_(2)Cu andFe-rich Al_6(Cu,Fe)/Al_(7)Cu_(2)Fe)is promoted by TiC particles at inter-and intra-dendritic regions.Accordingly,the hardness of composites is improved by grain boundary strengthening and particulate strengthening mechanisms.Both coefficient of friction and wear rate have an inverse relation with TiC concentration.The base alloy without TiC shows adhesive-type wear-induced deformation due to the formation of an oxide film,while composite samples exhibit a mechanically mixed layer and abrasive-type wear behavior.Composite samples shows a higher corrosion rate due to the presence of numerous precipitates which promote pitting corrosion. 展开更多
关键词 AA7075 alloy TiC reinforcement composite microstructure WEAR corrosion tribological
下载PDF
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
2
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
下载PDF
Effect of electrical current on tribological property of Cu matrix composite reinforced by carbon nanotubes 被引量:9
3
作者 许玮 胡锐 +1 位作者 李金山 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2237-2241,共5页
Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of ele... Cu matrix composite reinforced with 10%(volume fraction) carbon nanotubes(CNTs/Cu) and pure Cu bulk were prepared by powder metallurgy techniques under the same consolidation processing condition.The effect of electrical current on tribological property of the materials was investigated by using a pin-on-disk friction and wear tester.The results show that the friction coefficient and wear rate of CNTs/Cu composite as well as those of pure Cu bulk increase with increasing the electrical current without exception,and the effect of electrical current is more obvious on tribological property of pure Cu bulk than on that of CNTs/Cu composite;the dominant wear mechanisms are arc erosion wear and plastic flow deformation,respectively;CNTs can improve tribological property of Cu matrix composites with electrical current. 展开更多
关键词 CNTs/Cu composite pure Cu bulk electrical current tribological property
下载PDF
Property changes of wood-fiber/HDPE composites colored by iron oxide pigments after accelerated UV weathering 被引量:5
4
作者 张征明 杜华 +1 位作者 王伟宏 王清文 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第1期59-62,I0002,I0003,共6页
Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mec... Four kinds of iron oxide pigments were added into wood-fiber/high-density-polyethylene composites (WF/HDPE) at three different concentrations, to determine the effects of pigments on the changes in the color and mechanical properties of the composites before and after UV accelerated weathering. HDPE, wood fibers, pigments and other processing additives were dry-mixed in a high-speed mixer. The mixtures were extruded by two-step extrusion process with a self-designed twin-screw/single-screw extruder system. Color of the samples was determined according to CIE 1976 L^*a^*b^* system by a spec- trophotometer and the bending properties were tested to evaluate the mechanical properties before and after accelerated UV weathering. The result shows that the modulus of elasticity of WF/HDPE did not obvi- ously changed after incorporating with the pigments, but the bending strength increased. After accelerated aging for 2000 h, both color and mechanical properties significantly changed. Iron oxide red and black performed better than the other two pigments, and the pigments dosage of 2.28% in the composites is favourable. 展开更多
关键词 wood-plastic composite PIGMENTS WEATHERING color flexural property
下载PDF
Effect of glass fibre(GF) addition on microstructure and tensile property of GF/Pb composites fabricated by powder metallurgy
5
作者 耿耀宏 王蓬瑚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2672-2678,共7页
GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that rel... GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility. 展开更多
关键词 GF/Pb composites powder metallurgy sintering microstructure tensile property
下载PDF
Thermostability,mechanical and tribological behaviors of polyimide matrix composites interpenetrated with foamed copper 被引量:2
6
作者 王立鹏 张涛 +3 位作者 张雷 吴集思 王艳 周科朝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2336-2346,共11页
Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrica... Polyimide matrix composites interpenetrated with foamed copper were prepared via pressure impregnation and vacuum immersion to focus on their thermostability, mechanical and tribological behaviors as sliding electrical contact materials. The results show that the interpenetrating phase composites(IPC) are very heat-resistant and exhibit higher hardness as well as bending strength, when compared with homologous polyimide matrix composites without foamed copper. Sliding electrical contact property of the materials is also remarkably improved, from the point of contact voltage drops. Moreover, it is believed that fatigue wear is the main mechanism involved, along with slight abrasive wear and oxidation wear. The better abrasive resistance of the IPC under different testing conditions was detected, which was mainly attributed to the successful hybrid of foamed copper and polyimide. 展开更多
关键词 foamed copper pressure impregnation thermostability mechanical properties tribological behaviors
下载PDF
Effect of Rare Earths on Tribological Properties of Carbon Fibers Reinforced PTFE Composites 被引量:14
7
作者 上官倩芡 程先华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期469-473,共5页
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth... Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved. 展开更多
关键词 PTFE composites carbon fiber surface treatment tensile properties tribological properties rare earths
下载PDF
Tribological Properties and Failure Analysis of PTFE Composites used for Seals in the Transmission Unit 被引量:5
8
作者 宫燃 WAN Xiaojin ZHANG Xuerong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期26-30,共5页
The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing su... The sealing rings are one of the most important components as the sealing devices in the wet clutch unit of a heavy vehicle. The sealing ring, made from PTFE composites, was subjected to serious wear on the sealing surface, but the mating metal surface only had slight abrasion. A specialized test rig was designed for wear research and failure analysis of the sealing ring. The composition analyses of the ring material, working conditions and wear surface characteristics by visual inspection and tribological properties as well as microscopic analysis with scanning electron microscope was performed to determine the wear mechanism and failure causes. Results revealed that the wear of PTFE composites was characterized by abrasion and adhesion after a certain duration testing, and the wear mechanism changed to thermal fatigue and abrasive wear in the stage of intense wear. The thermal deformation and fatigue were primarily responsible for the rapid wear of the PTFE composites for the sealing rings. 展开更多
关键词 PTFE composite tribological properties SEALS failure analysis thermal effects
下载PDF
Influence of nano-Al_2O_3-reinforced oxide-dispersion-strengthened Cu on the mechanical and tribological properties of Cu-based composites 被引量:4
9
作者 Xiang Zhao Lei-chen Guo +7 位作者 Long Zhang Ting-ting Jia Cun-guang Chen Jun-jie Hao Hui-ping Shao Zhi-meng Guo Ji Luo Jun-bin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1444-1451,共8页
The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additi... The mechanical and tribological properties of Cu-based powder metallurgy (P/M) friction composites containing 10wt%-50wt% oxide-dispersion-strengthened (ODS) Cu reinforced with nano-Al2O3 were investigated. Additionally, the friction and wear behaviors as well as the wear mechanism of the Cu-based composites were characterized by scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS) elemental mapping. The results indicated that the Cu-based friction composite containing 30wt% ODS Cu exhibited the highest hardness and shear strength. The average and instantaneous friction coefficient curves of this sample, when operated in a high-speed train at a speed of 300 km/h, were similar to those of a commercial disc brake pad produced by Knorr-Bremse AG (Germany). Additionally, the lowest linear wear loss of the obtained samples was (0.008 ± 0.001) mm per time per face, which is much lower than that of the Knorr-Bremse pad ((0.01 ± 0.001) mm). The excellent performance of the developed pad is a consequence of the formation of a dense oxide composite layer and its close combination with the pad body. 展开更多
关键词 metal matrix composites oxide dispersion strengthening copper NANOPARTICLES microstructure mechanical properties tribological properties
下载PDF
Influence of CaCO_3 Whisker Content on Mechanical and Tribological Properties of Polyetheretherketone Composites 被引量:8
10
作者 Youxi LIN Chenghui GAO Ning LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期584-588,共5页
The mechanical and tribological properties of polyetheretherketone (PEEK) composites filled with CaCO3 whisker in various content of 0~45% (wt pct) were investigated. The composite specimens were prepared by comp... The mechanical and tribological properties of polyetheretherketone (PEEK) composites filled with CaCO3 whisker in various content of 0~45% (wt pct) were investigated. The composite specimens were prepared by compression molding. Tribological testing of composites in dry wear mode against carbon steel ring was carried out on a MM200 block-on-ring apparatus. Data on neat PEEK were also included for comparison. It was observed that inclusion of CaCO3 whisker affected the most mechanical properties and the friction and wear in a beneficial way. With an increase in CaCO3 whisker content, friction coefficient continuously decreased but the trends in wear performance varied. The specific wear rate showed minima as 1.28×10^-6 mm^3/Nm for 25% CaCO3 whisker inclusion followed by a slow increase for further CaCO3 whisker addition. In terms of friction applications, when the tribological and mechanical properties are combined, the optimal content of CaCO3 whisker in the filled PEEK should be recommended as 15% to 20%. Fairly good correlations are observed in friction coefficient vs bending modulus and wear rate vs bending strength, confirming that the bending properties prove to be the most important tribology controlling parameters in the present work. 展开更多
关键词 CaCO3 whisker Polyetheretherketone (PEEK) Mechanical properties tribological behaviour
下载PDF
Tribological Behavior of MC Nylon6 Composites Filled with Glass Fiber and Flyash 被引量:5
11
作者 张士华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期290-295,共6页
To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behavio... To improve tribological property of MC Nylon6, the glass fiber and fly ash reinforced monomer casting nylon compogites (GFFAPA) were prepared by anionic polymerization of e-caprolactam. The friction and wear behaviors of composites under dry condition, water lubrication and oil lubrication were investigated through a ring-black wear tester. Worn surfaces were analyzed using a scanning electron microscope. The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing. Compared to MC nylon, the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%, of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%. The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear. The wom surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites. Compared with dry friction, the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions. The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition. 展开更多
关键词 nylon6 composite TRIBOLOGY FRICTION WEAR
下载PDF
Tribological behavior of CNTs-Cu and graphite-Cu composites with electric current 被引量:11
12
作者 XU Wei HU Rui +2 位作者 LI Jin-shan ZHANG Yong-zhen FU Heng-zhi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期78-84,共7页
CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by usi... CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear. 展开更多
关键词 Cu matrix composite tribological behaviors electric current wear mechanisms
下载PDF
Tribological properties and thermal-stress analysis of C/C-SiC composites during braking 被引量:10
13
作者 Guan-yi CHEN Zhuan LI +5 位作者 Peng XIAO Xi OUYANG Wen-jie MA Peng-tao LI Jin-wei LI Yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期123-131,共9页
The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC c... The tribological properties and thermal-stress behaviors of C/C-SiC composites during braking were investigated aiming to simulate braking tests of high-speed trains. The temperature and structural fields of C/C-SiC composites during braking were fully coupled and simulated with ANSYS software. The results of tribological tests indicated that the C/C-SiC composites showed excellent static friction coefficient (0.68) and dynamic friction coefficient (average value of 0.36). The highest temperature on friction surface was 445℃. The simulated temperature field showed that the highest temperature which appeared on the friction surface during braking was about 463℃. Analysis regarding thermal-stress field showed that the highest thermal-stress on friction surface was 11.5 MPa. The temperature and thermal-stress distributions on friction surface during braking showed the same tendency. 展开更多
关键词 C/C-SiC composites BRAKE tribological behavior temperature field thermal-stress field
下载PDF
Physical dispersion state and fluorescent property of Eu-complex in the Eu-complex/silicon rubber composites 被引量:5
14
作者 温世鹏 胡水 +2 位作者 张小萍 张立群 刘力 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期626-632,共7页
The fluorescent complex Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, MA=Maleic an- hydrider) was synthesized and characterized with elemental analysis, infrared spectrum (IR)... The fluorescent complex Eu(TTA)2(Phen)(MA) (HTTA=2-Thenoyltrifluoroacetone, Phen=1,10-phenanthroline, MA=Maleic an- hydrider) was synthesized and characterized with elemental analysis, infrared spectrum (IR), scanning electron microscope (SEM), X-ray Diffraction(XRD), differential scanning calorimetry(DSC), and fluorescent measurement. To explore the effect of different physical dispersion state of Eu-complex on the fluorescent property of the Eu-complex/silicon rubber composites, various quantifies of Eu(TTA)2(phen) (MA) were mixed with silicon rubber (SIR) and peroxide to form uncured composites. These composites were vulcanized to obtain cured Eu-complex/SiR composites at 250 ℃, which was higher than the melting-point of Eu-complex. The SEM, XRD, DSC, and the fluorescent measurement of these composites showed that both the complex molecules dispersed in the silicon rubber during the melting process and the parent Eu-complex particles had positive effects on fluorescent property, whereas the re-crystallized Eu-complex particles and the aggregating complexes formed during the melting-process had negative effects on fluorescent property. For the uncured composites, their fluorescent intensities almost did not change with the increasing amount of Eu-complex. Furthermore, for the composites with small content of Eu-complex, their fluorescent intensities decreased significantly after curing, and this difference in fluorescent intensity became smaller as the content of Eu-complex increases. 展开更多
关键词 polymer-matrix composites melting blending physical dispersion state fluorescent property rare earths
下载PDF
A Study on Tribological Properties of Polypropylene Nanocomposites Reinforced with Pretreated HNTs 被引量:2
15
作者 Liu Zan Li Yanxiang +2 位作者 Ma Lu Qin Dunzhong Cheng Zhilin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第3期115-122,共8页
The polypropylene(PP) nanocomposites filled with pretreated halloysite nanotubes(HNTs) were prepared by the melt-blending method. Before filling, the as-received HNTs powder was at first purified and then modified. Th... The polypropylene(PP) nanocomposites filled with pretreated halloysite nanotubes(HNTs) were prepared by the melt-blending method. Before filling, the as-received HNTs powder was at first purified and then modified. The characterization tests showed that the purified HNTs had less impurity and more uniform pore size distribution and the surface hydrophobicity of the modified HNTs was obviously improved. The mechanical and tribological properties of the PP/HNTs nanocomposites were extensively investigated. The results showed that the tensile, bending and notched impact strength of the PP/HNTs nanocomposites was somewhat improved, but the wear resistance of the PP/HNTs nanocomposites was obviously enhanced. 展开更多
关键词 PP HNTs NANOcomposites MECHANICAL PROPERTIES tribological PROPERTIES
下载PDF
Effect of Ni-coated MoS2 on microstructure and tribological properties of(Cu−10Sn)-based composites 被引量:8
16
作者 Tian-xu QIU Shi-yan PAN +2 位作者 Cang FAN Xu-fei ZHU Xiao-ping SHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2480-2490,共11页
The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and Mo... The(Cu−10Sn)−Ni−MoS2 composites,prepared by powder metallurgy,were studied for the effects of Ni-coated MoS2 on the microstructure,mechanical properties and lubricating properties.The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately.The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix,and greatly improves the bonding of the matrix.The composites with 12 wt.%Ni-coated MoS2(C12)show the optimum performance including the mechanical properties and tribological behaviors.Under oil lubrication conditions,the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s.The average dry friction coefficient,sliding against 40Cr steel disc,is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa,respectively. 展开更多
关键词 tribology solid-lubricating interface bonding Ni-coated MoS2 (Cu−10Sn)-based composites
下载PDF
Synthesis and Tribological Properties of Graphene-Copper Nanoparticle Composites as Lithium Grease Additive 被引量:2
17
作者 Wang Jing Guo Xiaochuan +2 位作者 He Yan Jiang Mingjun Zhou Weigui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第4期113-122,共10页
In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and st... In this paper, the graphene-copper nanoparticle composites(GN/Cu NPs) were prepared by in situ chemical reduction in aqueous solution. The influence of pH value and the concentration of PVP on the particle size and structure of the GN/Cu NPs as well as the element distribution were analyzed via the scanning electron microscopy(SEM), the transmission electron microscopy(TEM), the X-ray diffraction(XRD), and the energy dispersive spectroscopy(EDS). The tribological properties of the grease with GN/Cu NPs composites have been studied by SRV-IV. It was found that compared to the base grease, the GN/Cu NPs composites could help to reduce the wear loss of the disk by 85.5% and the average friction coefficient by 15.5%. The test results clearly indicated that the addition of the GN/Cu NPs composites significantly enhanced the tribological properties of grease. 展开更多
关键词 GRAPHENE copper composite SYNTHESIS TRIBOLOGY
下载PDF
Mechanical and tribological behaviors of graphene/Inconel 718 composites 被引量:7
18
作者 Wei-han XIAO Shi-qiang LU +1 位作者 Ya-chao WANG Jing SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第10期1958-1969,共12页
Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.Th... Graphene/Inconel 718 composites were innovatively synthesized through selective laser melting,and the mechanical and tribological performances of the grapheme-reinforced Inconel 718 matrix composites were evaluated.The composite microstructures were characterized by XRD,SEM and Raman spectroscopy.The results show that selective laser melting is a viable method to fabricate Inconel 718 matrix composite and the addition of graphene nanoplatelets leads to a significant strengthening of Inconel 718 alloy,as well as the improvement of tribological performance.The yield strength and ultimate tensile strength of 1.0%graphene/Inconel 718 composites(mass fraction)are 42%and 53%higher than those of pure material,and the friction coefficient and wear rate are 22.4%and 66.8%lower than those of pure material.The decrease of fraction coefficient and wear rate is attributed to the improved hardness of composites and the formation of graphene nanoplatelet protective layer on the worn surfaces. 展开更多
关键词 GRAPHENE graphene/Inconel 718 composite mechanical properties friction and wear properties MICROSTRUCTURE selective laser melting
下载PDF
High temperature tribological behaviors of aluminum matrix composites reinforced with solid lubricant particles 被引量:5
19
作者 V.V.MONIKANDAN P.K.RAJENDRAKUMAR M.A.JOSEPH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1195-1210,共16页
The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.%... The AA6061-10 wt.%B4 C mono composite, AA6061-10 wt.%B4 C-Gr(Gr: graphite) hybrid composites containing 2.5, 5, and 7.5 wt.% Gr particles, and AA6061-10 wt.%B4 C-Mo S2 hybrid composites containing 2.5, 5, and 7.5 wt.% Mo S2 particles were fabricated through stir casting. The dry sliding tribological behaviors of the mono composite and hybrid composites were studied as a function of temperature on high temperature pin-on-disc tribotester against EN 31 counterface. The wear rate and friction coefficient of the Gr-reinforced and Mo S2-reinforced hybrid composites decreased in the temperature range of 30-100 ℃ due to the combined lubrication offered by the wear protective layer and its solid lubricant phase. Scanning electron microscopy(SEM) observation of the worn pin surface revealed severe adhesion, delamination, and abrasion wear mechanisms at temperatures of 150, 200, and 250 ℃, respectively. At 150 ℃, transmission electron microscopy(TEM) observation of the hybrid composites revealed the formation of deformation bands due to severe plastic deformation and fine crystalline structure due to dynamic recrystallization. 展开更多
关键词 aluminum hybrid composites high temperature tribological behavior solid lubrication deformation band dynamic recrystallization
下载PDF
Effect of hot extrusion on microstructure and tribological behavior of Al_(2)O_(3p) reinforced 7075 aluminum-matrix composites 被引量:4
20
作者 LEI Yu-shun YAN Hong +4 位作者 WEI Zhi-fan XIONG Jun-jie ZHANG Peng-xiang WAN Jian-ping WANG Zhi-lu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2269-2284,共16页
The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispe... The effects of hot extrusion and addition of Al_(2)O_(3p) on both microstructure and tribological behavior of 7075 composites were investigated via optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectrometry(EDS),and transmission electron microscopy(TEM).The experimental consequences reveal that the optimal addition of Al_(2)O_(3p) was 2 wt%.After hot extrusion,the Mg(Zn,Cu,Al)2 phases partially dissolve into the matrix and generate many uniformly distributed aging precipitation particles,the Al_(7)Cu_(2)Fe phases are squeezed and broken,and the Al_(2)O_(3p) become uniform distribution.The microhardness of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites reaches HV 170.34,increased by 41.5%than as-cast composites.The wear rate of as-extruded 2 wt%Al_(2)O_(3p)/7075 composites is further lower than that of as-cast composites under the same condition.SEM-EDS analyses reveal that the reinforced wear resistance of composites can put down to the protective effect of the Al_(2)O_(3p) reinforced transition layer.After hot extrusion,the transition layer becomes stable,which determines the reinforced wear resistance of the as-extruded composites. 展开更多
关键词 7075 alloy AL2O3P composites hot extrusion MICROSTRUCTURE tribological behavior
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部