Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Hu...Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Huang-HuaiHai Plain and is important for food security in China. However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation. Introducing legumes into the W–M rotation system may be an effective way to improve soil quality. In this study, we aimed to verify this hypothesis by exploring efficient planting systems(wheat–peanut(Arachis hypogaea L.)(W–P) rotation and wheat rotated with maize and peanut intercropping(W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai Plain. Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms(SMs), and soil organic carbon(SOC) fractions for three consecutive years. The results indicated that wheat yields were significantly increased under W–P and W–M/P(382.5–579.0 and 179.8–513.1 kg ha-1, respectively) compared with W–M. W–P and W–M/P provided significantly higher net returns(58.2 and 70.4%, respectively) than W–M. W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer. Compared with W–M, W–M/P improved labile carbon fractions;the sensitivity index of potentially mineralizable carbon, microbial biomass carbon(MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively. The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern. W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers. Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely,potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P. SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales. Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity. In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.展开更多
Deyeuxia angustifolia wetlands were widely distributed in the Sanjiang Plain in Northeast China. Due to strong demand for food production, large-area wetlands were reclaimed to farmlands, which threatened regional eco...Deyeuxia angustifolia wetlands were widely distributed in the Sanjiang Plain in Northeast China. Due to strong demand for food production, large-area wetlands were reclaimed to farmlands, which threatened regional ecological security greatly. Since the 21 th century, returning farmlands to wetlands was widely adopted for natural restoration in the Sangjiang Plain. As the first reflection of wetland restoration, vegetation succession of restored D. angustifolia wetlands should be fully assessed. In this study, vegetation investigation was carried out in three restored D. angustifolia wetlands with 5, 8 and 12 yr restoration, respectively. Meanwhile, a natural D. angustifolia wetland was selected as reference wetland. Results showed that community composition changed greatly and there was visible community succession. Community dominant species changed from composite to gramineae as restoration time increasing.At first, weeds community appeared in the restored wetlands, especially the xerophytes developed to the pioneer species rapidly. And then, mesophytes and wetland species became the dominant species in the restored wetlands. Finally, wetland species, especially D. angustifolia, occupied the dominant position of restored community. Shannon-wiener index(H) and Simpson index(D) both decreased to close to natural D. angustifolia wetlands. Compared with natural D. angustifolia wetland, species composition and diversity in restored wetlands were more complex and higher. As restoration time increasing, there were not significant differences between community characteristics of restored wetlands and natural wetland. All these suggested that vegetation in reclaimed D. angustifolia wetland could be restored naturally, but its restored period is 10 yr at least. From another angle, it is important to protect current natural wetlands.展开更多
基金National Natural Science Foundation of China (42107376)the earmarked fund for China Agriculture Research System (CARS-13)。
文摘Improving soil quality while achieving higher productivity is the major challenge in the agricultural industry. Wheat(Triticum aestivum L.)–maize(Zea mays L.)(W–M) rotation is the dominant planting pattern in the Huang-HuaiHai Plain and is important for food security in China. However, the soil quality is deteriorating due to the W–M rotation’s long-term, intensive, and continuous cultivation. Introducing legumes into the W–M rotation system may be an effective way to improve soil quality. In this study, we aimed to verify this hypothesis by exploring efficient planting systems(wheat–peanut(Arachis hypogaea L.)(W–P) rotation and wheat rotated with maize and peanut intercropping(W–M/P)) to achieve higher agricultural production in the Huang-Huai-Hai Plain. Using traditional W–M rotation as the control, we evaluated crop productivity, net returns, soil microorganisms(SMs), and soil organic carbon(SOC) fractions for three consecutive years. The results indicated that wheat yields were significantly increased under W–P and W–M/P(382.5–579.0 and 179.8–513.1 kg ha-1, respectively) compared with W–M. W–P and W–M/P provided significantly higher net returns(58.2 and 70.4%, respectively) than W–M. W–M/P and W–M retained the SOC stock more efficiently than W–P, increasing by 25.46–31.03 and 14.47–27.64%, respectively, in the 0–20 cm soil layer. Compared with W–M, W–M/P improved labile carbon fractions;the sensitivity index of potentially mineralizable carbon, microbial biomass carbon(MBC), and dissolved organic carbon was 31.5, 96.5–157.2, and 17.8% in 20–40, 10–40, and 10–20 cm soil layers, respectively. The bacterial community composition and bacteria function were altered as per the soil depth and planting pattern. W–M/P and W–M exhibited similar bacterial community composition and function in 0–20 and 20–40 cm soil layers. Compared with W–P, a higher abundance of functional genes, namely, contains mobile elements and stress-tolerant, and a lower abundance of genes, namely,potentially pathogenic, were observed in the 10–20 cm soil layer of W–M and the 0–20 cm soil layer of W–M/P. SOC and MBC were the main factors affecting soil bacterial communities, positively correlated with Sphingomonadales and Gemmatimonadales and negatively correlated with Blastocatellales. Organic input was the main factor affecting SOC and SMs, which exhibited feedback effects on crop productivity. In summary, W–M/P improved productivity, net returns, and SOC pool compared with traditional W–M rotation systems, and it is recommended that plant–soil–microbial interactions be considered while designing high-yield cropping systems.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFC0500403 2017YFC0505901)National Natural Science Foundation of China(No.41871101)
文摘Deyeuxia angustifolia wetlands were widely distributed in the Sanjiang Plain in Northeast China. Due to strong demand for food production, large-area wetlands were reclaimed to farmlands, which threatened regional ecological security greatly. Since the 21 th century, returning farmlands to wetlands was widely adopted for natural restoration in the Sangjiang Plain. As the first reflection of wetland restoration, vegetation succession of restored D. angustifolia wetlands should be fully assessed. In this study, vegetation investigation was carried out in three restored D. angustifolia wetlands with 5, 8 and 12 yr restoration, respectively. Meanwhile, a natural D. angustifolia wetland was selected as reference wetland. Results showed that community composition changed greatly and there was visible community succession. Community dominant species changed from composite to gramineae as restoration time increasing.At first, weeds community appeared in the restored wetlands, especially the xerophytes developed to the pioneer species rapidly. And then, mesophytes and wetland species became the dominant species in the restored wetlands. Finally, wetland species, especially D. angustifolia, occupied the dominant position of restored community. Shannon-wiener index(H) and Simpson index(D) both decreased to close to natural D. angustifolia wetlands. Compared with natural D. angustifolia wetland, species composition and diversity in restored wetlands were more complex and higher. As restoration time increasing, there were not significant differences between community characteristics of restored wetlands and natural wetland. All these suggested that vegetation in reclaimed D. angustifolia wetland could be restored naturally, but its restored period is 10 yr at least. From another angle, it is important to protect current natural wetlands.