The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has a...The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).展开更多
In order to control the composition,morphology and size distribution of oxide inclusions in spring steel,the relationship between the content or activity of aluminum and calcium in molten steel and compositions of oxi...In order to control the composition,morphology and size distribution of oxide inclusions in spring steel,the relationship between the content or activity of aluminum and calcium in molten steel and compositions of oxide inclusion precipitated at different temperatures was determined based on thermodynamic equilibrium for spring steel 60Si2 MnA,and has been verified by practice.The size distribution of non-metallic inclusions electrolytically extracted from specimens of hot rolled spring steel was determined by image analyzer.The results show that there are a great deal of large inclusions in spring steel produced by the conventional process,and the quantity and the size of large inclusions in spring steel produced by new process are largely reduced.As a result,the fatigue properties of the spring steel produced by new process are highly improved,and the ratio ofσ-1/σbis raised from 0.451 to 0.468.展开更多
This paper presents the effects of chemical compositions of austempered ductile iron (ADI) on casting quality, heat treatment process parameters and mechanical properties of final products. Through experiment and pr...This paper presents the effects of chemical compositions of austempered ductile iron (ADI) on casting quality, heat treatment process parameters and mechanical properties of final products. Through experiment and production practice, the impacts of carbon equivalent on ADI and its mechanical properties have been studied. Proper content ranges for carbon and silicon have been obtained to avoid ADI casting shrinkage and graphite fioatation, as well as to achieve the optimal mechanical properties. According to the impact of silicon content on austenite phase transformation, the existing form of carbon in ADI has been analyzed, and also the formula and diagram showing the relationship between austenitizing temperature and carbon content in austenite have been deduced. The chemical composition range for high performance ADI and its control points have been recommended, to serve as a reference for production process.展开更多
Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesi...Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.展开更多
Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and...Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.展开更多
A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ra...A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.展开更多
A composite control scheme consisting of modepredictive control (MPC) and disturbance observer (DOB) iproposed to solve the control performance degradationproblem of the turbidity of the treated water in the prese...A composite control scheme consisting of modepredictive control (MPC) and disturbance observer (DOB) iproposed to solve the control performance degradationproblem of the turbidity of the treated water in the presence osignificant changes in raw water quality, water flow rate andinternal model mismatch disturbances. The MPC is employedas a feedback controller for the coagulation process with alarge time delay. The DOB is adopted to estimate the severedisturbances in the turbidity control, such as large changes inraw water quality and water flow rate. The estimated valuesare applied for feed-forward compensation to rejecdisturbances. Finally, the disturbance rejection performancesfor step disturbances and time-varying disturbances in thenominal case and model mismatch case are tested. Thesimulation results illustrate that, compared with the MPCmethod, the proposed method can significantly improve thedisturbance rejection performance in the turbidity control othe treated water, no matter if in the presence of externadisturbances or internal model mismatch disturbances.展开更多
The idea of varying volume ratio of water to ethanol in solvent was firstly employed to yield phase composition controllable mixed- phase titanium dioxide (TiO2) photocatalysts via a low temperature solvothermal route...The idea of varying volume ratio of water to ethanol in solvent was firstly employed to yield phase composition controllable mixed- phase titanium dioxide (TiO2) photocatalysts via a low temperature solvothermal route at 353 K. It was found that anatase contents increase from 0 to 100% with increase of ethanol contents in solvent. The mixed-phase TiO2 with 60% anatase content exhibited the best photocatalytic activity in photodecomposing formaldehyde (FAD) under UV light irradiation, which increases by abou...展开更多
A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight...A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.展开更多
A composite control strategy for the precalciner exit temperature in cement kiln is introduced based on a mathematical model. In this model, the raw meal flow, coal powder flow and wind flow are taken as three inpu...A composite control strategy for the precalciner exit temperature in cement kiln is introduced based on a mathematical model. In this model, the raw meal flow, coal powder flow and wind flow are taken as three input variables, the clinker fow and exit teperature of cement kiln are output variables, and other influencing factors are considered as disturbance. A composite control system is synthesied by integrating self learning PID, fuzzy and feedforward function into a combined controller, and the arithmetics for the self learning PID controller, fuzzy controller and feedforward controller are elaborated respectively. The control strategy has been realized by software in real practice at cement factory. Application results show that the composite control technology is superior to the general PID control in control effect, and is suitable to the industrial process control with slow parameter variation, nonlinearity and uncertainty.展开更多
With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely an...With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.展开更多
In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonli...In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonlinear dynamic model of HHTs is established,which can satisfy that the forces of vehicles in different positions are different.Subsequently,a radial basis function network(RBFNN)is employed to approximate the uncertainties of HHTs,and a nonlinear disturbance observer(NDO)is constructed to estimate the approximation error and external disturbances.To indicate and improve the approximation accuracy,a serial-parallel identification model of HHTs is constructed to generate a prediction error,and an adaptive composite anti-disturbance control scheme is developed,where the prediction error and tracking error are employed to update RBFNN weights and an auxiliary variable of NDO.Finally,the feasibility and effectiveness of the proposed control scheme are demonstrated through the Lyapunov theory and simulation experiments.展开更多
This paper demonstrates a one-pot approach to produce highly dispersed dendritic palladium-platinum bi- metallic nanoparticles (NPs) with small particle size, tunable composition and high catalytic activity. Herein,...This paper demonstrates a one-pot approach to produce highly dispersed dendritic palladium-platinum bi- metallic nanoparticles (NPs) with small particle size, tunable composition and high catalytic activity. Herein, the PdPt bi- metallic NPs have been obtained using bayberry tannin (BT) as both the reducing agent and surfactant. Additionally, the PdPt bimetallic NPs with different Pd/Pt atomic ratios can be prepared by just varying the amounts of the Pd and Pt pre- cursors. Most importantly, the as-prepared Pd52Pt4s catalyst exhibits the optimal catalytic activities compared with the other compositional PdPt NPs (Pds2Ptls, Pd69Ph~, and Pd36 Pt64) and commercial Pt/C (20 wt.%) catalyst for the methanol oxidation reaction (MOR). Meanwhile, Pd52Pt4s also shows better CO tolerance, which can be attributed to the unique dendritic structure and the synergistic effect between Pd and Pt. With evident advantages of the facile preparation and enhanced catalytic performance, it holds great promise as a high-performance catalyst for electrochemical energy con- version.展开更多
This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control.The system consists of a semi-Markov layer and an observed mode sequence layer,and it is subject ...This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control.The system consists of a semi-Markov layer and an observed mode sequence layer,and it is subject to a matched disturbance generated by an exogenous system and a mismatched disturbance that is norm bounded.The proposal is to design a composite controller based on a disturbance observer to counteract and attenuate the disturbances effectively.By constructing a special Lyapunov function comparison point,the exponential stability is analyzed with the stability criterion in the form of linear matrix inequality is established.Two simulation examples are provided to demonstrate the practical merits of the composite controller relative to the single H_(∞)control.展开更多
Pd-based catalysts exhibit higher catalytic activity and durability in many electrochemical reactions.However,the electrochemical performance can be further enhanced by fine-tune of the alloy composition.Although bina...Pd-based catalysts exhibit higher catalytic activity and durability in many electrochemical reactions.However,the electrochemical performance can be further enhanced by fine-tune of the alloy composition.Although binary alloys have been fully studied,the multicomponent alloys are far beyond understanding,which leaves cocktail effect a compromised explanation for the high-entropy alloy.Herein Pd nanosheet-seeded growth was used to synthesize a Pd-Zn-Cd ternary alloy by accurately controlling the Pd-Zn-Cd molar ratio through adjusting the amount of introduced Cd precursor.Through analysis of the crystal phase structure of PdCdZnx and PdZn_(x)Cd_(1-x),the competitive relationship of Zn and Cd in the alloying process with Pd was unveiled:Pd1Cd1 intermetallics(IMC)is thermodynamically favored over Pd_(1)Zn_(1)IMC in the ternary system.However,the increased structure stability of PdCd over PdZn does not bring about increased durability in the catalytic ethanol oxidation reaction.The morphology selection of Pd seeds is also crucial for the study,as Pd cubes,Pd tetrahedrons,and Pd octahedrons do not form PdZn in the same protocol.The successful alloying through the seeded growth depends on the maximum diffusion depth of foreign atoms into the seed.展开更多
In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite ti...In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.展开更多
Halide perovskite (CsPbX3, X = C1, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites fo...Halide perovskite (CsPbX3, X = C1, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites for most CsPbX3 NC practical applications. Therefore, a facile method of synthesizing CsPbX3 (X = C1, Br, or I) NCs in the nonpolar solvent octane was developed. The process was conducted in air at - 90℃ to synthesize high-quality CsPbX3 NCs showing 12-44 nm wide emission and high photoluminescence quantum yield, exceeding 90%. An in situ anion-exchange method was developed to tune CsPbX3 NC photoluminescence emission, using PbX2 dissolved in octane as the halide source. NC morphology was controlled by dissolving specific metal-organic salts in the precursor solution prior to nucleation, and nanocubes, nanodots, nanosheets, nanoplatelets, nanorods, and nanowires were obtained following the same general method providing a facile, versatile route to controlling CsPbX3 NC emission bands and morphologies, which will broaden the range of CsPbX3 NC practical applications.展开更多
The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances incl...The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances including parametric uncertainties,flexible vibration,and unknown nonlinear dynamics degrade the control performance significantly.In order to enhance the system anti-disturbance ability,this paper proposes a composite anti-disturbance control law for the spacecraft position and attitude tracking.Firstly,the relative position and attitude dynamic models with multiple disturbances are established,where the refined descriptions of multiple disturbances are accomplished based on their characteristics.Then,by combining a dual Disturbance ObserverBased Control(DOBC)and a sliding mode control,a composite controller with hierarchical architecture is proposed,where the dual DOBC in the feedforward channel is used to reject the flexible vibration,environment disturbance,and complicated nonlinear dynamics,while the parametric uncertainties are attenuated by the sliding mode control in the feedback channel.Stability analysis is carried out for the closed-loop system by unifying the sliding mode dynamics and observer dynamics.Finally,the effectiveness of the proposed controller is verified via numerical simulation and hardware-in-the-loop test.展开更多
The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key param...The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key parameters for steady turning. We compare and analyze the different driven-characteristics between aerodynamic control surfaces and vectored thrust in turning. We design a composite control combining aerodynamic control surfaces and vectored thrust according to different dynamic pressure conditions, to achieve coordinated turning under high or low airspeed situations.展开更多
基金Supported by the National Natural Science Foundation of China(21676299,21476261and 21606255)
文摘The dividing wall column (DWC) is considered as a major breakthrough in distillation technology and has good prospect of industrialization. Model predictive control (MPC) is an advanced control strategy that has acquired extensive applications in various industries. In this study, MPC is applied to the process for separating ethanol, n-propanol, and n-butanol ternary mixture in a fully thermally coupled DWC. Both composition control and tem- perature inferent/al control are considered. The multiobjective genetic algor/thm function "gamult/obj" in Matlab is used for the weight tuning of MPC. Comparisons are made between the control performances of MPC and PI strategies. Simulation results show that although both MPC and PI schemes can stabilize the DWC in case of feed disturbances, MPC generally behaves better than the PI strategy for both composition control and tempera- ture inferential control, resulting in a more stable and superior performance with lower values of integral of squared error (ISE).
基金Item Sponsored by National Natural Science Foundation of China(59874023)
文摘In order to control the composition,morphology and size distribution of oxide inclusions in spring steel,the relationship between the content or activity of aluminum and calcium in molten steel and compositions of oxide inclusion precipitated at different temperatures was determined based on thermodynamic equilibrium for spring steel 60Si2 MnA,and has been verified by practice.The size distribution of non-metallic inclusions electrolytically extracted from specimens of hot rolled spring steel was determined by image analyzer.The results show that there are a great deal of large inclusions in spring steel produced by the conventional process,and the quantity and the size of large inclusions in spring steel produced by new process are largely reduced.As a result,the fatigue properties of the spring steel produced by new process are highly improved,and the ratio ofσ-1/σbis raised from 0.451 to 0.468.
基金supported by the key project for Science and Technology of Hubei Provincial Department of Education(No.D20101606)the Scientific and Technological Project of China Textile Industry Association(No.2008085)
文摘This paper presents the effects of chemical compositions of austempered ductile iron (ADI) on casting quality, heat treatment process parameters and mechanical properties of final products. Through experiment and production practice, the impacts of carbon equivalent on ADI and its mechanical properties have been studied. Proper content ranges for carbon and silicon have been obtained to avoid ADI casting shrinkage and graphite fioatation, as well as to achieve the optimal mechanical properties. According to the impact of silicon content on austenite phase transformation, the existing form of carbon in ADI has been analyzed, and also the formula and diagram showing the relationship between austenitizing temperature and carbon content in austenite have been deduced. The chemical composition range for high performance ADI and its control points have been recommended, to serve as a reference for production process.
基金supported by the National Natural Science Foundation of China (21373272)~~
文摘Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.
基金sponsored by the National Key Research and Development Program of China(2021YFC2501800)the National Natural Science Foundation of China(No.U1909218)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.T2121004).
文摘Lung diseases associated with alveoli,such as acute respiratory distress syndrome,have posed a long-term threat to human health.However,an in vitro model capable of simulating different deformations of the alveoli and a suitable material for mimicking basement membrane are currently lacking.Here,we present an innovative biomimetic controllable strain membrane(BCSM)at an air–liquid interface(ALI)to reconstruct alveolar respiration.The BCSM consists of a high-precision three-dimensional printing melt-electrowritten polycaprolactone(PCL)mesh,coated with a hydrogel substrate—to simulate the important functions(such as stiffness,porosity,wettability,and ALI)of alveolar microenvironments,and seeded pulmonary epithelial cells and vascular endothelial cells on either side,respectively.Inspired by papercutting,the BCSM was fabricated in the plane while it operated in three dimensions.A series of the topological structure of the BCSM was designed to control various local-area strain,mimicking alveolar varied deformation.Lopinavir/ritonavir could reduce Lamin A expression under over-stretch condition,which might be effective in preventing ventilator-induced lung injury.The biomimetic lung-unit model with BCSM has broader application prospects in alveoli-related research in the future,such as in drug toxicology and metabolism.
基金Project (20090162120080) supported by Doctoral Fund of Ministry of Education, ChinaProject (20070410989) supported by China Postdoctoral Science FoundationProject(748310000) supported by Central South University Science Foundation for Youths, China
文摘A novel precursor of nickel-cobalt alloy powders with an appropriate Ni to Co molar ratio was prepared under selectively synthetic conditions. The composition and morphology of the precursor were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR) and energy dispersive spectrometry (EDS). The effects of pH value, reaction temperature, metal ion concentrations and surfactant on the morphology and the dispersion of precursor were investigated. The results show that the morphology of precursor depends on ammonia content in the precursor. A fibriform precursor is a complicated ammonia-containing nickel-cobalt oxalate. The uniform shape-controlled fibrous precursor is obtained under the following optimum conditions: ammonia as complex agent as well as pH adjustor, oxalate as coprecipitator, 50-65 °C of reaction temperature, 0.5-0.8 mol/L of total concentration of Ni2+ and Co2+, PVP as dispersant, and pH 8.0-8.4.
基金The National Natural Science Foundation of China(No.61504027)the Natural Science Foundation of Jiangsu Province(No.BK20140647)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A composite control scheme consisting of modepredictive control (MPC) and disturbance observer (DOB) iproposed to solve the control performance degradationproblem of the turbidity of the treated water in the presence osignificant changes in raw water quality, water flow rate andinternal model mismatch disturbances. The MPC is employedas a feedback controller for the coagulation process with alarge time delay. The DOB is adopted to estimate the severedisturbances in the turbidity control, such as large changes inraw water quality and water flow rate. The estimated valuesare applied for feed-forward compensation to rejecdisturbances. Finally, the disturbance rejection performancesfor step disturbances and time-varying disturbances in thenominal case and model mismatch case are tested. Thesimulation results illustrate that, compared with the MPCmethod, the proposed method can significantly improve thedisturbance rejection performance in the turbidity control othe treated water, no matter if in the presence of externadisturbances or internal model mismatch disturbances.
基金the Ministry of Science and Technology, China (No. 2004CB719503)
文摘The idea of varying volume ratio of water to ethanol in solvent was firstly employed to yield phase composition controllable mixed- phase titanium dioxide (TiO2) photocatalysts via a low temperature solvothermal route at 353 K. It was found that anatase contents increase from 0 to 100% with increase of ethanol contents in solvent. The mixed-phase TiO2 with 60% anatase content exhibited the best photocatalytic activity in photodecomposing formaldehyde (FAD) under UV light irradiation, which increases by abou...
基金supported by the National Natural Science Foundation of China(61627810 61790562 61403096)
文摘A composited integrated guidance and control(IGC) algorithm is presented to tackle the problem of the IGC design in the dive phase for the bank-to-turn(BTT) vehicle with the inaccuracy information of the line-of-sight(LOS) rate. For the sake of theoretical derivation, an IGC model in the pitch plane is established. The high-order finite-time state observer(FTSO), with the LOS angle as the single input, is employed to reconstruct the states of the system online. Besides, a composited IGC algorithm is presented via the fusion of back-stepping and dynamic inverse. Compared with the traditional IGC algorithm, the proposed composited IGC method can attenuate effectively the design conservation of the flight control system, while the LOS rate is mixed with noise. Extensive experiments have been performed to demonstrate that the proposed approach is globally finite-time stable and strongly robust against parameter uncertainty.
文摘A composite control strategy for the precalciner exit temperature in cement kiln is introduced based on a mathematical model. In this model, the raw meal flow, coal powder flow and wind flow are taken as three input variables, the clinker fow and exit teperature of cement kiln are output variables, and other influencing factors are considered as disturbance. A composite control system is synthesied by integrating self learning PID, fuzzy and feedforward function into a combined controller, and the arithmetics for the self learning PID controller, fuzzy controller and feedforward controller are elaborated respectively. The control strategy has been realized by software in real practice at cement factory. Application results show that the composite control technology is superior to the general PID control in control effect, and is suitable to the industrial process control with slow parameter variation, nonlinearity and uncertainty.
文摘With the aid of the latest fiber optic sensing technology parameters in the cure process of ther- mosetting resin-matrix composite, such as temperature, viscosity,void and residual stress, can be monitored entirely and efficiently.In this paper, experiment results of viscosity measurement in composite cure process in autoclave using fiber optic sensors are presented. Based on the sensed information, a computer program is utilized to control the cure process. With this technology, the cure process becomes more apparent and controllable, which will greatly improve the cured products and reduce the cost.
基金This research was supported by the National Natural Science Foundation of China(Grants No.U2034211 and 61963029)the Jiangxi Provincial Natural Science Foundation(Grants No.20232ACE01013 and 20232ACB202007)。
文摘In this paper,an adaptive composite anti-disturbance control of heavy haul trains(HHTs)is proposed.First,the mechanical principle and characteristics of couplers are analysed and the longitudinal multi-particles nonlinear dynamic model of HHTs is established,which can satisfy that the forces of vehicles in different positions are different.Subsequently,a radial basis function network(RBFNN)is employed to approximate the uncertainties of HHTs,and a nonlinear disturbance observer(NDO)is constructed to estimate the approximation error and external disturbances.To indicate and improve the approximation accuracy,a serial-parallel identification model of HHTs is constructed to generate a prediction error,and an adaptive composite anti-disturbance control scheme is developed,where the prediction error and tracking error are employed to update RBFNN weights and an auxiliary variable of NDO.Finally,the feasibility and effectiveness of the proposed control scheme are demonstrated through the Lyapunov theory and simulation experiments.
基金supported by the National Natural Science Foundation of China (51571151, 51701139, 51671143, 51371119 and U1601216)
文摘This paper demonstrates a one-pot approach to produce highly dispersed dendritic palladium-platinum bi- metallic nanoparticles (NPs) with small particle size, tunable composition and high catalytic activity. Herein, the PdPt bi- metallic NPs have been obtained using bayberry tannin (BT) as both the reducing agent and surfactant. Additionally, the PdPt bimetallic NPs with different Pd/Pt atomic ratios can be prepared by just varying the amounts of the Pd and Pt pre- cursors. Most importantly, the as-prepared Pd52Pt4s catalyst exhibits the optimal catalytic activities compared with the other compositional PdPt NPs (Pds2Ptls, Pd69Ph~, and Pd36 Pt64) and commercial Pt/C (20 wt.%) catalyst for the methanol oxidation reaction (MOR). Meanwhile, Pd52Pt4s also shows better CO tolerance, which can be attributed to the unique dendritic structure and the synergistic effect between Pd and Pt. With evident advantages of the facile preparation and enhanced catalytic performance, it holds great promise as a high-performance catalyst for electrochemical energy con- version.
基金supported by the National Natural Science Foundation of China under Grants Nos.62173034,61925303,and 62088101。
文摘This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control.The system consists of a semi-Markov layer and an observed mode sequence layer,and it is subject to a matched disturbance generated by an exogenous system and a mismatched disturbance that is norm bounded.The proposal is to design a composite controller based on a disturbance observer to counteract and attenuate the disturbances effectively.By constructing a special Lyapunov function comparison point,the exponential stability is analyzed with the stability criterion in the form of linear matrix inequality is established.Two simulation examples are provided to demonstrate the practical merits of the composite controller relative to the single H_(∞)control.
基金the support of National Natural Science Foundation of China(No.22175127).
文摘Pd-based catalysts exhibit higher catalytic activity and durability in many electrochemical reactions.However,the electrochemical performance can be further enhanced by fine-tune of the alloy composition.Although binary alloys have been fully studied,the multicomponent alloys are far beyond understanding,which leaves cocktail effect a compromised explanation for the high-entropy alloy.Herein Pd nanosheet-seeded growth was used to synthesize a Pd-Zn-Cd ternary alloy by accurately controlling the Pd-Zn-Cd molar ratio through adjusting the amount of introduced Cd precursor.Through analysis of the crystal phase structure of PdCdZnx and PdZn_(x)Cd_(1-x),the competitive relationship of Zn and Cd in the alloying process with Pd was unveiled:Pd1Cd1 intermetallics(IMC)is thermodynamically favored over Pd_(1)Zn_(1)IMC in the ternary system.However,the increased structure stability of PdCd over PdZn does not bring about increased durability in the catalytic ethanol oxidation reaction.The morphology selection of Pd seeds is also crucial for the study,as Pd cubes,Pd tetrahedrons,and Pd octahedrons do not form PdZn in the same protocol.The successful alloying through the seeded growth depends on the maximum diffusion depth of foreign atoms into the seed.
基金Natural Science Foundation of China(61074013,61203011)Specialized Research Fundfor the Doctoral Program of Higher Education of China(20090092110022)+1 种基金New Century Excellent Talents in University(NCET-10-0328)the Scientific Research Foundation of Graduate School of Southeast University
文摘In this paper, the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy, which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method. By choosing a suitable coordinate transformation, the spacecraft dynamics can be divided into three second-order subsystems. Each subsystem includes a certain part and an uncertain part. By using the finite time control technique, a continuous finite time controller is designed for the certain part. The uncertain part is considered to be a lumped disturbance, which is estimated by a DOB, and a corresponding feedforward design is then implemented to compensate the disturbance. Simulation results are employed to confirm the effectiveness of the proposed approach.
文摘Halide perovskite (CsPbX3, X = C1, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites for most CsPbX3 NC practical applications. Therefore, a facile method of synthesizing CsPbX3 (X = C1, Br, or I) NCs in the nonpolar solvent octane was developed. The process was conducted in air at - 90℃ to synthesize high-quality CsPbX3 NCs showing 12-44 nm wide emission and high photoluminescence quantum yield, exceeding 90%. An in situ anion-exchange method was developed to tune CsPbX3 NC photoluminescence emission, using PbX2 dissolved in octane as the halide source. NC morphology was controlled by dissolving specific metal-organic salts in the precursor solution prior to nucleation, and nanocubes, nanodots, nanosheets, nanoplatelets, nanorods, and nanowires were obtained following the same general method providing a facile, versatile route to controlling CsPbX3 NC emission bands and morphologies, which will broaden the range of CsPbX3 NC practical applications.
基金supported by the China National Postdoctoral Program for Innovative Talents(No.BX20200031)the National Natural Science Foundation of China(Nos.62103013,61633003,61973012)the Program for Changjiang Scholars and Innovative Research Team,China(No.IRT 16R03).
文摘The rendezvous and proximity operations with respect to a tumbling non-cooperative target pose high requirement for the position and attitude control accuracy of servicing spacecraft.However,multiple disturbances including parametric uncertainties,flexible vibration,and unknown nonlinear dynamics degrade the control performance significantly.In order to enhance the system anti-disturbance ability,this paper proposes a composite anti-disturbance control law for the spacecraft position and attitude tracking.Firstly,the relative position and attitude dynamic models with multiple disturbances are established,where the refined descriptions of multiple disturbances are accomplished based on their characteristics.Then,by combining a dual Disturbance ObserverBased Control(DOBC)and a sliding mode control,a composite controller with hierarchical architecture is proposed,where the dual DOBC in the feedforward channel is used to reject the flexible vibration,environment disturbance,and complicated nonlinear dynamics,while the parametric uncertainties are attenuated by the sliding mode control in the feedback channel.Stability analysis is carried out for the closed-loop system by unifying the sliding mode dynamics and observer dynamics.Finally,the effectiveness of the proposed controller is verified via numerical simulation and hardware-in-the-loop test.
基金Project (No.61175074) supported by the National Natural Science Foundation of China
文摘The parametric model of stratospheric airships is established in the body axes coordinate system. In this paper we study the turning mechanism of stratospheric airships including the generated forces and the key parameters for steady turning. We compare and analyze the different driven-characteristics between aerodynamic control surfaces and vectored thrust in turning. We design a composite control combining aerodynamic control surfaces and vectored thrust according to different dynamic pressure conditions, to achieve coordinated turning under high or low airspeed situations.