We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the op...We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the operator from H^1 to H^1 is compact if and only if it is weakly compact. Meanwhile, we get the analogue on the Bergman spaces.展开更多
This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to ...This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.展开更多
We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) ...In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.展开更多
The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biod...The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.展开更多
The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned ba...The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.展开更多
In recent time, hardy integral inequalities have received attentions of many researchers. The aim of this paper is to obtain new integral inequalities of hardy-type which complement some recent results.
To overcome the unboundedness of the half-plane,we use Khinchine’s inequality and atom decomposition techniques to provide joint Carleson measure characterizations when the difference of composition operators is boun...To overcome the unboundedness of the half-plane,we use Khinchine’s inequality and atom decomposition techniques to provide joint Carleson measure characterizations when the difference of composition operators is bounded or compact from standard weighted Bergman spaces to Lebesgue spaces over the halfplane for all index choices.For applications,we obtain direct analytic characterizations of the bounded and compact differences of composition operators on such spaces.This paper concludes with a joint Carleson measure characterization when the difference of composition operators is Hilbert-Schmidt.展开更多
基金Supported in part by 973 plan and NSF of Zhejiang Province of China(Gl999075105)
文摘We consider the weighted composition operators between Hardy spaces on the unit ball, and obtain some sufficient and necessary conditions of bounded or compact weighted composition operators. We also prove that the operator from H^1 to H^1 is compact if and only if it is weakly compact. Meanwhile, we get the analogue on the Bergman spaces.
基金Supported by the National Natural Science Foundation of China (10771064)the Natural Science Foundation of Zhejiang province (Y6090036+1 种基金Y7080197,Y606197)the Foundation of Department of Education of Zhejiang Province (20070482)
文摘This paper deals with the boundedness and compactness of the weighted composition operators from the F(p, q, s) spaces, including Hardy space, Bergman space, Qp space, BMOA space, Besov space and α-Bloch space, to Bers-type spaces Hv^∞( or little Bers-type spaces Hv,o∞ ), where v is normal.
基金This work was supported by NSF of China(11171203,11201280)New Teacher’s Fund for Doctor Stations,Ministry of Education(20114402120003)NSF of Guangdong Province(10151503101000025,S2011010004511,S2011040004131)
文摘We characterize the boundedness and compactness of weighted composition operators on weighted Dirichlet spaces in terms of Nevanlinna counting functions and Caxleson measure.
文摘In this paper, necessary and sufficient conditions for a closed range composition operator CФ on the general family of holomorphic function spaces F(p,q,s) and more generally on α-Besov type spaces F(p,αp-2,s) are given. We give a Carleson measure characterization on F (p, αp - 2, s) spaces, then we indicate how Carleson measures can be used to characterize boundedness and compactness of CФ on F(p,q,s) and F(p,αp- 2,s) spaces.
文摘The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.
文摘The weighted Gini-Simpson quadratic index is the simplest measure of biodiversity which takes into account the relative abundance of species and some weights assigned to the species. These weights could be assigned based on factors such as the phylogenetic distance between species, or their relative conservation values, or even the species richness or vulnerability of the habitats where these species live. In the vast majority of cases where the biodiversity is measured the species are supposed to be independent, which means that the relative proportion of a pair of species is the product of the relative proportions of the component species making up the respective pair. In the first section of the paper, the main versions of the weighted Gini-Simpson index of biodiversity for the pairs and triads of independent species are presented. In the second section of the paper, the weighted Gini-Simpson quadratic index is calculated for the general case when the species are interdependent. In this instance, the weights reflect the conservation values of the species and the distribution pattern variability of the subsets of species in the respective habitat induced by the inter-dependence between species. The third section contains a numerical example.
文摘In recent time, hardy integral inequalities have received attentions of many researchers. The aim of this paper is to obtain new integral inequalities of hardy-type which complement some recent results.
基金supported by National Natural Science Foundation of China(Grant Nos.11771340 and 11431011)。
文摘To overcome the unboundedness of the half-plane,we use Khinchine’s inequality and atom decomposition techniques to provide joint Carleson measure characterizations when the difference of composition operators is bounded or compact from standard weighted Bergman spaces to Lebesgue spaces over the halfplane for all index choices.For applications,we obtain direct analytic characterizations of the bounded and compact differences of composition operators on such spaces.This paper concludes with a joint Carleson measure characterization when the difference of composition operators is Hilbert-Schmidt.