High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c...High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.展开更多
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno...With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.展开更多
Monitoring the electrophysiology activity of neurons and blood calcium signals can enable a better understanding of disease-related neural system circuits.However,currently,in situ calcium ion monitoring tools are sca...Monitoring the electrophysiology activity of neurons and blood calcium signals can enable a better understanding of disease-related neural system circuits.However,currently,in situ calcium ion monitoring tools are scarce and exhibit low integration and limited sensitivity.In this letter,we propose an implantable probe with an integrated in situ Ag/AgCl reference electrode(ISA/ARE)that can monitor action potential(AP)and Ca^(2+) concentrations.展开更多
Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial i...Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes.展开更多
The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the cr...The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.展开更多
High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en...Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among...Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.展开更多
Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Mater...Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany.展开更多
Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal c...Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018).展开更多
Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with w...Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.展开更多
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme...A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.展开更多
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal...Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.展开更多
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion...Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.展开更多
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as...Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak...The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak type double-stage Hall thruster configuration, and a particle-in-cell simulation is carried out to investigate the influences of both acceleration electrode voltage value and zero magnetic point position on the thruster discharge characteristics and performances.The results indicate that increasing the acceleration voltage leads to a larger potential drop in the acceleration stage, allowing ions to gain higher energy, while electrons are easily absorbed by the intermediate electrode, resulting in a decrease in the anode current and ionization rate. When the acceleration voltage reaches 500 V, the thrust and efficiency are maximized, resulting in a 15%increase in efficiency. After the acceleration voltage exceeds 500 V, a potential barrier forms within the channel, leading to a decrease in thruster efficiency. Further study shows that as the second zero magnetic point moves towards the outlet of the channel, more electrons easily traverse the zero magnetic field region, participating in the ionization. The increase in the ionization rate leads to a gradual enhancement in both thrust and efficiency.展开更多
Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-ef...Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-effectiveness and safety records.Despite of 165 years of development,the low energy density as well as the coupled power and energy density scaling restrain its wider application in real life.To address this challenge,we optimized the configuration of conventional Pb-acid battery to integrate two gas diffusion electrodes.The novel device can work as a Pb-air battery using ambient air,showing a peak power density of 183 mW cm^(−2),which was comparable with other state-of-the-art metal-O_(2)batteries.It can also behave as a fuel cell,simultaneously converting H_(2)and air into electricity with a peak power density of 75 mW cm^(−2).Importantly,this device showed little performance degradation after 35 h of the longevity test.Our work shows the exciting potential of lead battery technology and demonstrates the importance of battery architecture optimization toward improved energy storage capacity.展开更多
The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to ac...The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to achieve a self-standing electrode,composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters(ACP/Ru_(SAC+C))via acid activation,immersion,and high-temperature pyrolysis.Ab initio molecular dynamics(AIMD)calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper.Furthermore,the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy(AC-STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS).Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect,tuning the electronic structure and thereby significantly enhancing their catalytic performance.Notably,the ACP/Ru_(SAC+C)exhibits a remarkable turnover frequency(TOF)of 18 s^(−1)and an exceptional mass activity(MA)of 2.2 A mg^(−1),surpassing the performance of conventional Pt electrodes.The self-standing electrode,featuring harmoniously coexisting Ru states,stands out as a prospective choice for advancing HER catalysts,enhancing energy efficiency,productivity,and selectivity.展开更多
基金supported by the National Natural Science Foundation of China(22378431,52004338,51622406,21673298)Hunan Provincial Natural Science Foundation(2023JJ40210,2022JJ20075)+3 种基金the Science and Technology Innovation Program of Hunan Province(2023RC3259)the Key R&D plan of Hunan Province(2024JK2096)Scientifc Research Fund of Hunan Provincial Education Department(23B0699)Central South University Innovation-Driven Research Programme(2023CXQD008).
文摘High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials.
基金supported by the National Natural Science Foundation of China(grant No.52422511,U20A6004)the Guangdong Basic and Applied Basic Research Foundation(grant No.2022B1515120011)Guangzhou Basic and Applied Basic Research Foundation(grant No.2024A04J6362).
文摘With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs.
基金supported by the STI 2030-Major Projects (Nos. 2022ZD0208601 and 2022ZD0208600)the National Key R&D Program of China (Nos. 2022YFF120301 and2020YFB1313502)+5 种基金the Fundamental Research Funds for the Central Universitiesthe Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDA25040100, XDA25040200, and XDA25040300)the National Natural Science Foundation of China(No. 42127807-03)the Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX)China Postdoctoral Science Foundation (No. 2023M732197)the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University,China
文摘Monitoring the electrophysiology activity of neurons and blood calcium signals can enable a better understanding of disease-related neural system circuits.However,currently,in situ calcium ion monitoring tools are scarce and exhibit low integration and limited sensitivity.In this letter,we propose an implantable probe with an integrated in situ Ag/AgCl reference electrode(ISA/ARE)that can monitor action potential(AP)and Ca^(2+) concentrations.
基金support from the National Natural Science Foundation of China(Nos.52073230,62204204,and 62288102)the Shaanxi Provincial Science Fund for Distinguished Young Scholars(No.2023-JC-JQ-32)+2 种基金the Science and Technology Innovation 2030-Major Project(No.2022ZD0208601)the Shanghai Sailing Program(No.21YF1451000)the China National Postdoctoral Program for Innovative Talents(No.BX20230494).
文摘Cortical electrodes are a powerful tool for the stimulation and/or recording of electrical activity in the nervous system.However,the inevitable wound caused by surgical implantation of electrodes presents bacterial infection and inflammatory reaction risks associated with foreign body exposure.Moreover,inflammation of the wound area can dramatically worsen in response to bacterial infection.These consequences can not only lead to the failure of cortical electrode implantation but also threaten the lives of patients.Herein,we prepared a hydrogel made of bacterial cellulose(BC),a flexible substrate for cortical electrodes,and further loaded antibiotic tetracycline(TC)and the anti-inflammatory drug dexamethasone(DEX)onto it.The encapsulated drugs can be released from the BC hydrogel and effectively inhibit the growth of Gram-negative and Gram-positive bacteria.Next,therapeutic cortical electrodes were developed by integrating the drug-loaded BC hydrogel and nine-channel serpentine arrays;these were used to record electrocorticography(ECoG)signals in a rat model.Due to the controlled release of TC and DEX from the BC hydrogel substrate,therapeutic cortical electrodes can alleviate or prevent symptoms associated with the bacterial infection and inflammation of brain tissue.This approach facilitates the development of drug delivery electrodes for resolving complications caused by implantable electrodes.
基金This work was supported by the National Natural Science Foundation of China(nos.21988102,and 22305026)the China Postdoctoral Science Foundation(2019M650433).
文摘The controlled assembly of nanomaterials has demon-strated significant potential in advancing technological devices.However,achieving highly efficient and low-loss assembly technique for nanomate-rials,enabling the creation of hierarchical structures with distinctive func-tionalities,remains a formidable challenge.Here,we present a method for nanomaterial assembly enhanced by ionic liquids,which enables the fabrication of highly stable,flexible,and transparent electrodes featuring an organized layered structure.The utilization of hydrophobic and non-volatile ionic liquids facilitates the production of stable interfaces with water,effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface.Furthermore,the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior,enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film.The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4Ωsq^(-1) and 93%transmittance,but also showcases remarkable environmental stability and mechanical flexibility.Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices.This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金supported in part by the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Technology(YBKT21-06,YKBT23-05).
文摘Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金supported by the National Natural Science Foundation of China(22072107,21872105)the Natural Science Foundation of Shanghai(23ZR1464800)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Science&Technology Commission of Shanghai Municipality(19DZ2271500)。
文摘Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed.
文摘Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany.
基金supported by the CatWalk Spinal Cord Injury Trust and the Health Research Council of New Zealand(Project grant and HRC/Catwalk Partnership 19/895)(to DS).
文摘Damage to the spinal cord disrupts the electrically active nerve cells which normally transmit afferent and efferent signals,resulting in loss of motor,sensory,and autonomic functions.Potential treatments for spinal cord injury utilizing implanted spinal electrodes can be broadly classified into three different categories.The first of these approaches is“spinal stimulation”where electrodes,usually positioned above the level of injury,provide electrical stimulation to target and disrupt pain signals before they reach the brain.The second approach uses“activity-dependent neuro-technologies”,in which electrodes positioned below the level of injury initiate a complex spatiotemporal pattern of stimulation at the lumbar spinal cord to generate a walking gait in the limbs(Minev et al.,2015;Wagner et al.,2018).
基金supported by National Natural Science Foundation of China(No.52301382)the Natural Science Foundation of Hubei Province(No.2022CFB730)Automotive Components Technology of Hubei Collaborative Innovation Project(No.2015XTZX0406)。
文摘Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.
基金supported by funding from Bavarian Center for Battery Technology(Baybatt,Hightech Agenda Bayern)and Bayerisch-Tschechische Hochschulagentur(BTHA)(BTHA-AP-202245,BTHA-AP-2023-5,and BTHA-AP-2023-12)supported by the University of Bayreuth-Deakin University Joint Ph.D.Program+1 种基金supported by the Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS2023-00213749)
文摘A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.
基金financially supported by the Shenzhen Science and Technology Program (JCYJ20200109105805902,JCYJ20220818095805012)the National Natural Science Foundation of China (22208221,22178221,42377487)+2 种基金the Scientific and Technological Plan of Guangdong Province (2019B090905005,2019B090911004)the Natural Science Foundation of Guangdong Province (2021A1515110751)the Guangdong Basic and Applied Basic Research Foundation (2022A1515110477,2021B1515120004)。
文摘Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs.
基金financially supported by the National Key Research and Development Program of China(No.2017YFB1002900)the National Natural Science Foundation of China(No.51661145021)+5 种基金the Key Natural Science Program of Jiangsu Province(Nos.BE2022118,BE2021643 and BE2016772)the Traction Project of Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province(No.Q816000217)the Scholarship from Key Laboratory of Modern Optical Technologies of Ministry of Education of Chinathe Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionsChina Prosperity Green Industry Foundation of Ministry of Industry and Information Technologysupported by the open project of synchrotron radiation characterization of chain oriented/stacked polar topology and energy modulation of supramolecules(No.2100982)。
文摘Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.
基金supported by the National Natural Science Foundation of China(Nos.U21A20310,22278164,22122805,22308112)the Science and Technology Program of Guangzhou,China(No.2023A04J0665)China Postdoctoral Science Foundation(No.2023M741214)。
文摘Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金supported by National Natural Science Foundation of China (Nos. 11975062, 11605021 and 12375009)the Fundamental Research Funds for the Central Universities (No. 3132023192)。
文摘The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak type double-stage Hall thruster configuration, and a particle-in-cell simulation is carried out to investigate the influences of both acceleration electrode voltage value and zero magnetic point position on the thruster discharge characteristics and performances.The results indicate that increasing the acceleration voltage leads to a larger potential drop in the acceleration stage, allowing ions to gain higher energy, while electrons are easily absorbed by the intermediate electrode, resulting in a decrease in the anode current and ionization rate. When the acceleration voltage reaches 500 V, the thrust and efficiency are maximized, resulting in a 15%increase in efficiency. After the acceleration voltage exceeds 500 V, a potential barrier forms within the channel, leading to a decrease in thruster efficiency. Further study shows that as the second zero magnetic point moves towards the outlet of the channel, more electrons easily traverse the zero magnetic field region, participating in the ionization. The increase in the ionization rate leads to a gradual enhancement in both thrust and efficiency.
基金the funding through the National Natural Science Foundation of China (52272233)Guangdong Basic and Applied Basic Research Foundation (2023A1515011161)
文摘Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-effectiveness and safety records.Despite of 165 years of development,the low energy density as well as the coupled power and energy density scaling restrain its wider application in real life.To address this challenge,we optimized the configuration of conventional Pb-acid battery to integrate two gas diffusion electrodes.The novel device can work as a Pb-air battery using ambient air,showing a peak power density of 183 mW cm^(−2),which was comparable with other state-of-the-art metal-O_(2)batteries.It can also behave as a fuel cell,simultaneously converting H_(2)and air into electricity with a peak power density of 75 mW cm^(−2).Importantly,this device showed little performance degradation after 35 h of the longevity test.Our work shows the exciting potential of lead battery technology and demonstrates the importance of battery architecture optimization toward improved energy storage capacity.
基金supported by the National Research Foundation of Korea(NRF),funded by the Korean government(2022M3H4A1A01012712,2022M3H4A1A04096380)S.Back acknowledges the support from the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2016R1A6A1A03012845)and generous supercomputing time from KISTI.
文摘The development of cost-effective,highly efficient,and durable electrocatalysts has been a paramount pursuit for advancing the hydrogen evolution reaction(HER).Herein,a simplified synthesis protocol was designed to achieve a self-standing electrode,composed of activated carbon paper embedded with Ru single-atom catalysts and Ru nanoclusters(ACP/Ru_(SAC+C))via acid activation,immersion,and high-temperature pyrolysis.Ab initio molecular dynamics(AIMD)calculations are employed to gain a more profound understanding of the impact of acid activation on carbon paper.Furthermore,the coexistence states of the Ru atoms are confirmed via aberration-corrected scanning transmission electron microscopy(AC-STEM),X-ray photoelectron spectroscopy(XPS),and X-ray absorption spectroscopy(XAS).Experimental measurements and theoretical calculations reveal that introducing a Ru single-atom site adjacent to the Ru nanoclusters induces a synergistic effect,tuning the electronic structure and thereby significantly enhancing their catalytic performance.Notably,the ACP/Ru_(SAC+C)exhibits a remarkable turnover frequency(TOF)of 18 s^(−1)and an exceptional mass activity(MA)of 2.2 A mg^(−1),surpassing the performance of conventional Pt electrodes.The self-standing electrode,featuring harmoniously coexisting Ru states,stands out as a prospective choice for advancing HER catalysts,enhancing energy efficiency,productivity,and selectivity.