期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
Spatial pattern and compositive structure of forests in Guizhou
1
作者 YAO Yonghui1, ZHANG Baiping1, ZHOU Chenghu1, LUO Yang2, ZHU Jun2, QIN Gang2, LI Baolin1, CHEN Xiaodong1(1. Inst. of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 2. Inst. of Forestry Survey and Design of Guizhou Pr 《Journal of Geographical Sciences》 SCIE CSCD 2002年第4期413-419,共7页
Remote-sensing and field data of Guizhou forest resources in 2000 are processed using ArcGIS, with the production of forest resource distribution map, forest age class structure map, and forest canopy distribution map... Remote-sensing and field data of Guizhou forest resources in 2000 are processed using ArcGIS, with the production of forest resource distribution map, forest age class structure map, and forest canopy distribution map. Analysis of these data shows that: (1) though there are multiple types of forest resources, forest coverage is low (only 25.27%, excluding sparse woodland, shrub and underage-forest); (2) the geographical distribution of forests is quite uneven, mainly in the southeast of the province and in Zunyi prefecture; (3) the zonal evergreen broad-leaved forests have been seriously destroyed, with striking secondary features, i.e., coniferous forest and shrubbery account for the greatest proportion of Guizhou forests; (4) the timber-forest is much larger in area than shelter-forest and economic forest; (5) young-and-middle aged forests are more widely distributed than near-and-over matured forest; and (6) the forest of Guizhou is not enough to effectively protect the environment of karst mountain areas of the province. 展开更多
关键词 forest resources spatial pattern compositive structure GUIZHOU
下载PDF
Suppression of Co(Ⅱ)ion deposition and hazards:Regulation of SEI film composition and structure
2
作者 Jiaqi Zhan Mingzhu Liu +4 位作者 Yutian Xie Jiarong He Hebing Zhou Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期259-265,I0007,共8页
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th... Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes. 展开更多
关键词 Lithium-ion batteries Transition metal ions SEI film Composition and structure
下载PDF
In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N_(2)
3
作者 Yunmian Xiao Changhui Song +4 位作者 Zibin Liu Linqing Liu Hanxiang Zhou Di Wang Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期387-409,共23页
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl... It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites. 展开更多
关键词 laser powder bed fusion layered structure composites in-situ synthesis TiN strength-plasticity synergy
下载PDF
Numerical investigation of the mechanical behavior of the backfill–rock composite structure under triaxial compression 被引量:5
4
作者 Hongjian Lu Yiren Wang +2 位作者 Deqing Gan Jie Wu Xiaojun Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期802-812,共11页
To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite ... To ensure safe and economical backfill mining,the mechanical response of the backfill–rock interaction system needs to be understood.The numerical investigation of the mechanical behavior of backfill–rock composite structure(BRCS)under triaxial compression,which includes deformation,failure patterns,strength characteristics,and acoustic emission(AE)evolution,was proposed.The models used in the tests have one rough interface,two cement–iron tailings ratios(CTRs),four interface angles(IAs),and three confining pressures(CPs).Results showed that the deformation,strength characteristics,and failure patterns of BRCS under triaxial compression depend on IA,CP,and CTR.The stress–strain curves of BRCS under triaxial compression could be divided into five stages,namely,compaction,elasticity,yield,strain softening,and residual stress.The relevant AE counts have corresponding relationships with different stages.The triaxial compressive strengths of composites increase linearly with the increase of the CP.Furthermore,the CP stress strengthening effect occurs.When the IAs are45°and 60°,the failure areas of composites appear in the interface and backfill.When the IAs are 75°and 90°,the failure areas of composites appear in the backfill,interface,and rock.Moreover,the corresponding failure modes yield the combined shear failure.The research results provide the basis for further understanding of the stability of the BRCS. 展开更多
关键词 backfill–rock composite structure triaxial compression mechanical behavior acoustic emission numerical simulation
下载PDF
Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling 被引量:1
5
作者 Boqiang Cui Guorui Feng +6 位作者 Jinwen Bai Gaili Xue Kai Wang Xudong Shi Shanyong Wang Zehua Wang Jun Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1524-1537,共14页
A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples mu... A backfilling body-coal pillar-backfilling body(BPB)structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining.However,the failure response of BPB composite samples must be investigated.This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions.A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress.The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed.The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal-backfilling interface,and then expanded to the backfilling elements,ultimately appearing in the coal elements.The elastic strain energy in the BPB composite samples reached a maximum at the peak stress,whereas the dissipated energy continued to accumulate and increase.The damage evolution curve and equation agree well with the test results,providing further understanding of instability prevention and the control mechanisms of the BPB composite samples.The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element's volume ratio,and the BPB composite structure became more vulnerable to failure.This research is expected to guide the design,stability monitoring,instability prevention,and control of BPB structures in pillar-side cemented paste backfilling mining. 展开更多
关键词 backfilling body-coal pillar-backfilling body composite structure digital speckle correlation method uniaxial compression deformation characteristics damage evolution
下载PDF
Composite wave-absorbing structure combining thin plasma and metasurface
6
作者 郝志安 李健飞 +5 位作者 徐彬 姚静锋 袁承勋 王莹 周忠祥 王晓鸥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期148-155,共8页
In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a me... In order to solve the thickness dependence of plasma absorption of electromagnetic waves and further reduce the backward radar scattering cross section(RCS)of the target,we designed a novel composite structure of a metasurface and plasma.A metasurface with three absorption peaks is designed by means of an equivalent circuit based on an electromagnetic resonance type metamaterial absorber.The reflection and absorption of the composite structure are numerically and experimentally verified.The finite integration method was used to simulate a composite structure of finite size to obtain the RCS.The experimental measurements of electromagnetic wave reflection were conducted by a vector network analyzer(Keysight N5234A)and horn antennas,etc.The research showed that the absorption capacity of this composite structure was substantially improved compared to either the plasma or the metasurface,and it is more convenient for application due to its low plasma thickness requirement and easy fabrication. 展开更多
关键词 PLASMA metasurface composite structure radar scattering cross section
下载PDF
Preparation of Flower-like Copper Foam Supported Co_(3)O_(4) Electrocatalyst and Its Hydrogen Evolution Performance
7
作者 李兆 CHENG Julong +2 位作者 WANG Yanan WU Kunyao CAO Jing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期327-331,共5页
Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffrac... Flower-like copper foam Co_(3)O_(4) catalysts(Co_(3)O_(4)/CF) were prepared by hydrothermal method.The crystalline structure and microscopic morphology of the prepared samples were characterized by using X-ray diffractometer(XRD) and scanning electron microscope(SEM),and the electrochemical properties were investigated by an electrochemical workstation.The experimental results show that the Co_(3)O_(4) catalysts are successfully prepared on the foamed copper support by hydrothermal method,and the material’s morphology is mainly flower cluster.When the current density is 10 mA·cm^(-2),the overpotential value of the Co_(3)O_(4)/CF catalyst is 141 mV,lower than that of blank support.The electrochemical impedance(EIS) spectrum shows that the R_(ct )value of the Co_(3)O_(4)/CF catalyst decreases,and the Coulomb curves of double-layer show that the electrochemically active area of the Co_(3)O_(4)/CF catalyst efficiently increases compared with that of the blank support.Therefore,the as-obtained Co_(3)O_(4)/CF catalyst exhibits a good hydrogen evolution rate,showing great applicability potential in the catalytic electrolysis of water for hydrogen production. 展开更多
关键词 Co_(3)O_(4)/CF composite structure ELECTROCATALYSIS hydrogen evolution reaction
下载PDF
Parametric study on contact sensors for MASW measurement-based interfacial debonding detection for SCCS
8
作者 Chen Hongbing Pang Xin +3 位作者 Gan Shiyu Li Yuanyuan Gokarna Chalise Nie Xin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期331-344,共14页
Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta... Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays. 展开更多
关键词 steel-concrete composite structures(SCCS) interface debonding detection multi-channel analysis of surface waves(MASW) sensor selection comparative experimental study
下载PDF
Damage to aircraft composite structures caused by directed energy system: A literature review 被引量:2
9
作者 Y.X.Zhang Zhi Zhu +1 位作者 Richardson Joseph Isfakul Jamal Shihan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1269-1288,共20页
This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this a... This paper presents a comprehensive review of the research studies on direct energy system effect on aircraft composite structures to develop a good understanding of state-of-the-art research and development in this area.The review begins with the application of composite materials in the aircraft structures and highlights their particular areas of application and limitations.An overview of directed energy system is given.Some of the commonly used systems in this category are discussed and the working principles of laser energy systems are described.The experimental and numerical studies reported regarding the aircraft composite structures subject to the effect of directed energy systems,especially the laser systems are reviewed in detail.In particularly,the general effects of laser systems and the relevant damage mechanisms against the composite structures are reported.The review draws attention to the recent research and findings in this field and is expected to guide engineers/researchers in future theoretical,numerical,and experimental studies. 展开更多
关键词 AIRCRAFT Composite structures Damage mechanisms Direct energy system Laser system EXPERIMENT Numerical studies
下载PDF
Magneto-rheological elastomer (MRE) based composite structures for micro-vibration control 被引量:2
10
作者 YQ Ni ZG Ying ZH Chen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期345-356,共12页
Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoel... Magneto-rheological elastomers (MILEs) are used to construct composite structures for micro-vibration control of equipment under stochastic support-motion excitations. The dynamic behavior of MREs as a smart viscoelastic material is characterized by a complex modulus dependent on vibration frequency and controllable by external magnetic fields. Frequency-domain solution methods for stochastic micro-vibration response analysis of the MRE-based structural systems are developed to derive the system frequency-response function matrices and the expressions of the velocity response spectrum. With these equations, the root-mean-square (RMS) velocity responses in terms of the one-third octave frequency band spectrum can be calculated. Further, the optimization problem of the complex moduli of the MRE cores is defined by minimizing the velocity response spectra and the RMS velocity responses through altering the applied magnetic fields. Simulation results illustrate the influences of MRE parameters on the RMS velocity responses and the high response reduction capacities of the MRE-based structures. In addition, the developed frequency-domain analysis methods are applicable to sandwich beam structures with arbitrary cores characterized by complex shear moduli under stochastic excitations described by power spectral density functions, and are valid for a wide frequency range. 展开更多
关键词 magneto-rheological elastomer (MRE) micro-vibration control EQUIPMENT composite structure sandwich beam stochastic excitation
下载PDF
Internal Force Distribution in Steel-Concrete Composite Structure for Pylon of Cable-Stayed Bridge 被引量:5
11
作者 蒲黔辉 白光亮 《Journal of Southwest Jiaotong University(English Edition)》 2009年第2期95-101,共7页
Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure... Adopting a steel-anchor beam and steel corbel composite structure in the anchor zone on pylon is one of the key techniques for the design of Jintang bridge, a cable-stayed bridge in Zhoushan, China. In order to ensure the safety of the steel-concrete composite structure, a stud connector model for the joint section was put forward. Experiments were conducted to obtain the relation between load and slip of specimen, the failure pattern of stud connector, the yield bearing capacity and ultimate bearing capacity of a single stud, etc. The whole process of the structural behavior of the specimen was comprehensively analyzed. The features of the internal force distribution in the steel-concrete composite structure and the strain distribution of stud connector under different loads were emphatically studied. The test results show that the stud connector is applicable for the steel-concrete composite structure for pylon of Jintang bridge. The stud has a good ductility performance and a obvious yield process before its destruction. The stud connector basically works in a state of elasticity under a load less than the yield load. 展开更多
关键词 Stud connector Experimental research Steel-concrete composite structure Cable-stayed bridge Internal force distribution
下载PDF
Experimental study on anti-penetration mechanism of bolted composite protective structure with limited span under impact of low-velocity projectile 被引量:3
12
作者 Yu-jia Liu Dian Li +2 位作者 Hai-liang Hou Zhu-jie Zhao Yue Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期995-1005,共11页
In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were design... In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were designed,the ballistic test of the bolted composite protective structure with limited span was carried out,and the bearing and failure characteristics of the bolted region,as well as the energy dissipation of each part of the structure,were analyzed.The results show that in the condition of lowvelocity impact,there are three failure modes for the bolted composite protective structure subjected to projectile penetration,including failure of the impact point of the composite target,failure of protective structure connecting components and failure of the holes in the bolted region of the composite target;the failure mode of bolt holes in the bolted region has a great influence on the protection performance,and the allowable value of the bearing capacity of the bolted region depends on the sum of the minimum failure load in the failure modes and the friction force;shear-out failure occurring in the bolt holes in the bolted region exerts the greatest effect on ballistic performance,which should be avoided;When simultaneous failure occurs in the bolted region and the free deformation region of the composite protective structure,the energy absorption per unit surface density of the composite protective structure reaches the maximum,which can give full play to its anti-penetration efficiency. 展开更多
关键词 Impact dynamics Composite protective structure Bolt joint Ballistic test Failure modes
下载PDF
Polarization-Insensitive Magnetic Quadrupole-Shaped and Electric Quadrupole-Shaped Fano Resonances Based on a Plasmonic Composite Structure 被引量:1
13
作者 董晨 李宝 +5 位作者 李韩笑 刘慧 陈孟琪 李冬冬 闫长春 张道华 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期68-71,共4页
A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudina... A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements. 展开更多
关键词 of is it in Polarization-Insensitive Magnetic Quadrupole-Shaped and Electric Quadrupole-Shaped Fano Resonances Based on a Plasmonic Composite structure MODE that on
下载PDF
Basic Physical Characteristics of the Water-permeable Brick with Composite Structure 被引量:1
14
作者 王海峰 LIU Yang MEI Zhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期645-655,共11页
The resin-sand mixture was proposed to be used as the surface course,and cement permeable concrete was used as the base course;such two kinds of materials were combined to prepare water-permeable brick with a composit... The resin-sand mixture was proposed to be used as the surface course,and cement permeable concrete was used as the base course;such two kinds of materials were combined to prepare water-permeable brick with a composite structure.The compressive strength,flexural strength,and permeability were studied by using adjusting the contents of carbon fiber,quartz powder,cement,sand,and surfactant.The study shows that the hydrophilicity of the resin-sand mixture can be improved after any amount of resin is replaced by quartz powder;by using the surfactant,the interface energy of the particles can be reduced so that the water permeability of the surface course can be promoted effectively.However,the mechanical properties of the surface course were negatively affected by the surfactant.With the optimal process consideration in the experiments,the properties about compressive strength,flexural strength,and permeability of the composite permeable brick can meet the requirements of the specifications of resin-sand based water permeable brick JGT 376-2012(compressive strength was higher than 35 MPa,the flexural strength exceeded 5.19 MPa,and the average permeability coefficient was higher than 2.3×10^(-2)cm/s).There are no obvious pores on the surface course and only water molecules can pass through it,therefore,the surface of the permeable brick cannot be blocked up by solid substances,and the permeability of such permeable brick can be improved effectively in this way. 展开更多
关键词 water-permeable brick RESIN composite structure PERMEABILITY SURFACTANT
下载PDF
STRUCTURE AND MAGNETIC PROPERTIES OF YFe_(12-x)Ti_x COMPOUNDS 被引量:2
15
作者 B. Fuquan, J.L. Wang, N. Tang, W.Q. Wang, Z.Z. Guo, G.H. Wu and F.M. Yang (State Key Laboratory of Magnetism, Institute of Physics, The Chinese Academy of Sciences, Beijing 100080, China) (Department of Physics, Inner Mongolia Normal University, Huhhot 01 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2001年第3期171-176,共6页
The structure and magnetic properties of the YFe12-xTix compounds (x=0.85, 1.00, 1.10, 1.20 and 1.30) have been investigated. Both the thermomagnetic analysis and X-ray diffraction patterns show that all compounds stu... The structure and magnetic properties of the YFe12-xTix compounds (x=0.85, 1.00, 1.10, 1.20 and 1.30) have been investigated. Both the thermomagnetic analysis and X-ray diffraction patterns show that all compounds studied are almost single phase and crystallize in the ThMn12-type structure. The lattice parameters a, c and unit cell volume V increase monotonously with the increase of Ti content. Curie temperature Tc is almost independent on the Ti content while the spontaneous magnetization M0, the anisotropy field Ba and the anisotropy constant K1 decrease monotonously with the increase of Ti content and the temperature increases from 1.5 K to 293 K. 展开更多
关键词 Iron Magnetic properties structure (composition) TITANIUM YTTRIUM
下载PDF
Bilateral Filter for the Optimization of Composite Structures 被引量:1
16
作者 Yuhang Huo Ye Tian +2 位作者 Shiming Pu Tielin Shi Qi Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期1087-1099,共13页
In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure... In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified. 展开更多
关键词 Design optimization composite structure fiber angle optimization bilateral filtering Shepard interpolation manufacturability constraints
下载PDF
INFLUENCE OF DAMPING MODELS ON DYNAMIC ANALYSES OF A BASE-ISOLATED COMPOSITE STRUCTURE UNDER EARTHQUAKES AND ENVIRONMENTAL VIBRATIONS 被引量:1
17
作者 费一凡 田源 +1 位作者 黄羽立 陆新征 《工程力学》 EI CSCD 北大核心 2022年第3期201-211,共11页
Structural design simultaneously governed by earthquakes and environmental vibrations has received a lot of attention in recent years.Base-isolated composite structures are typically used in the above-mentioned struct... Structural design simultaneously governed by earthquakes and environmental vibrations has received a lot of attention in recent years.Base-isolated composite structures are typically used in the above-mentioned structural design.The corresponding analysis involves validating structural safety under earthquakes and human comfort under environmental vibrations through a time-history analysis.Thus,a reasonable damping model is essential.In this work,the representatives of viscous damping model and rate-independent damping model,namely the Rayleigh damping model and uniform damping model,were adopted to investigate the influence of damping models on the time-history analysis of such structural designs.The energy dissipation characteristics of the above-mentioned damping models were illustrated via a dynamic test of recycled aggregate concrete specimens.A case study was performed on a base-isolated steelconcrete composite structure.The dynamic responses under the excitation of earthquakes and environmental vibrations were compared using different damping models.The uniform damping model was found to be more flexible than the Rayleigh damping model in dealing with excitations with different frequency components.The uniform damping model is both theoretically advantageous and easy to use,demonstrating its potential in dynamic analysis of structures designed simultaneously governed by earthquakes and environmental vibrations. 展开更多
关键词 seismic and environmental vibration analysis Rayleigh damping model uniform damping model seismic isolation composite structure
下载PDF
Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface 被引量:1
18
作者 宁仁霞 焦铮 鲍婕 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期83-87,共5页
A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite s... A tunable absorber, composed of a graphene ribbon on two layers of TiO2-Au between two slabs of dielectric material all on a metal substrate, is designed and numerically investigated. The absorption of the composite structure varies with the geometrical parameters of the structure and the physical parameters of graphene at mid-infrared frequencies. The numerical simulation shows that a near-perfect absorption with single and alum bands can be achieved in a certain frequency range. We also analyze the electric and surface current distributions to study the dual-band absorber. The results show that the absorber can be tuned by the chemical potential and electron phonon relaxation time of graphene, and electromagnetically induced transparency phenomenon can be obtained. The results of this study may be beneficial in the fields of infrared communication, perfect absorbers, sensors and filters. 展开更多
关键词 ab Narrow and Dual-Band Tunable Absorption of a Composite structure with a Graphene Metasurface THz LiF
下载PDF
A Review of Structural Health Monitoring Techniques as Applied to Composite Structures 被引量:1
19
作者 Amafabia,Daerefa-a Mitsheal Montalvao,Diogo +1 位作者 David-West,Opukuro Haritos,George 《Structural Durability & Health Monitoring》 EI 2017年第2期91-147,共57页
Structural Health Monitoring(SHM)is the process of collecting,interpreting and analysing data from structures in order to determine its health status and the remaining life span.Composite materials have been extensive... Structural Health Monitoring(SHM)is the process of collecting,interpreting and analysing data from structures in order to determine its health status and the remaining life span.Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties.However,composite materials are prone to develop damage when subjected to low to medium impacts(i.e.1-10 m/s and 11-30 m/s respectively).Hence,the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance.Despite the availability of several SHM methods for the damage identification in composite structures,no single technique has proven suitable for all circumstances.It must be noted that the amount of techniques available nowadays is too extensive to be comprehensively reviewed in a single paper.Therefore,the focus will be on techniques that can serve as a starting point for studies focusing on damage detection,localisation,assessment and prognosis on certain kinds of structures.Thus,the line of thought behind the search and the structure of this review is a result of objectives beyond the scope of the paper itself.Nevertheless,it was considered that,once the above was understood,an updated synopsis such as this could also be useful for other researchers in the same field. 展开更多
关键词 SHM composite structures damage identification failure mechanisms low impact TECHNIQUES
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:5
20
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 Composite frame structure Multi-scale optimization Topology optimization Fiber winding angle Structural compliance
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部