土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,...土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。展开更多
对近红外光谱数据进行小波变换,利用处理后的小波系数,采用偏最小二乘法预测了有机肥料中钾离子(K+)的含量,建立了小波变换与近红外光谱技术结合用于测定奶牛粪便为主的有机堆肥产品样品中无机钾离子测定的模型。结果表明:小波变换充分...对近红外光谱数据进行小波变换,利用处理后的小波系数,采用偏最小二乘法预测了有机肥料中钾离子(K+)的含量,建立了小波变换与近红外光谱技术结合用于测定奶牛粪便为主的有机堆肥产品样品中无机钾离子测定的模型。结果表明:小波变换充分提取了近红外光谱的信息,数据压缩为原始大小的3.6%,计算量大大减少;文章利用C4小波系数对48个有机肥料样本进行建模,对42个预示集样本进行预测,预示集的RMSEP(root mean square error of prediction)和r2(correlation coefficient)分别为0.113 8%和0.927,优于原始光谱直接建模的0.167 2%和0.835%。基于小波系数的模型优于传统的全谱模型,对于无机离子(K+)的测定可以取得较为准确的预测结果。展开更多
文摘土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)>2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD>2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。
文摘对近红外光谱数据进行小波变换,利用处理后的小波系数,采用偏最小二乘法预测了有机肥料中钾离子(K+)的含量,建立了小波变换与近红外光谱技术结合用于测定奶牛粪便为主的有机堆肥产品样品中无机钾离子测定的模型。结果表明:小波变换充分提取了近红外光谱的信息,数据压缩为原始大小的3.6%,计算量大大减少;文章利用C4小波系数对48个有机肥料样本进行建模,对42个预示集样本进行预测,预示集的RMSEP(root mean square error of prediction)和r2(correlation coefficient)分别为0.113 8%和0.927,优于原始光谱直接建模的0.167 2%和0.835%。基于小波系数的模型优于传统的全谱模型,对于无机离子(K+)的测定可以取得较为准确的预测结果。