A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control...A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.展开更多
To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amo...To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amount dispensed in each cycle. Taking account of gas compressibility, an intelligent model-based control strategy is proposed to compensate the deviation of adhesive amount dispensed from the desired one. Both simulations and experiments show that the dispensing consistency is greatly improved by using the model-based control strategy developed in this paper.展开更多
Aim: To evaluate the effects of retrospective quality control on pressure-flow data with computer-based urodynamic systems from men with benign prostatic hyperplasia (BPH). Methods: A total of 582 traces of pressu...Aim: To evaluate the effects of retrospective quality control on pressure-flow data with computer-based urodynamic systems from men with benign prostatic hyperplasia (BPH). Methods: A total of 582 traces of pressure-flow study from 181 men with BPH was included in the study. For each trace, maximum urinary flow rate (Qmax) and detrusor pressure at Qmax (pdet.Qmax) were, respectively, read from manually smoothed and corrected uroflow and detrusor pressure curves from the computer print-outs. Obstruction coefficient, International Continence Society (ICS) and Schaefer nomograms were used to detect urethral resistance and to diagnose obstruction. The results obtained by manual reading were compared with those from computer-based systems. Results: After manual correction, Qmax underwent a consistently significant decrease by 1.2 mL/s on average (P 〈 0.001), and had a change range of 0.5-10.4 mL/s. However, pdet.Qmax underwent inconsistently intra-individual changes after correction. The obstruction coefficient increased significantly, by an average of 0.07 (P 〈 0.05). Using the ICS nomogram, the percentage of obstruction increased from 69.8% to 73.9%, and of the non-obstruction decreased from 8.8% to 5.3% (P 〈 0.05). There were 11% of traces that changed the classifications using the ICS nomogram, and 28.9% that changed the grades for the Schaefer nomogram. Conclusion: Systematically significant differences in parameters from pres- sure-flow study between manual readings and computer recordings were demonstrated. Manual correction resulted in a consistently lower Q a higher urethral resistance, and an aggravating obstruction. Manual readings can correct considerable false diagnoses for obstruction. Retrospective quality control of pressure-flow data with com- puter-based systems is necessary.展开更多
A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multi...A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.展开更多
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c...An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.展开更多
The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study t...The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.展开更多
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig...The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.展开更多
A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerical...A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow:with the first one,the control is implemented at the base,with the second at the wall,while the third one may be regarded as a combination of these.When jets are over-expanded,the control is not very effective.However,when a favourable pressure gradient is established in the nozzle,the control becomes effective,leading to an increase in the base pressure.展开更多
Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynami...Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynamic balance theory of local flow field in multilayer gob area was built based on the realistic requirement that the serious threat on current mining coal layer by large-scale spontaneous combustion fire on close spontaneous combustion coal layer group of Datong Coal mining area at the 'di-hard' conditions was caused by small coal pit mining. The kernel was in dynamic balance between flow field pressures of working face and local flow field in multilayer gob area was kept by transformation. Corresponding technology and set of devices were developed.展开更多
The current study focuses on the motion-pressure coupled control for a multicapsule stratospheric airship and transforms the path-tracking and heading-hold control of airships into guidance tracking with a time-varyin...The current study focuses on the motion-pressure coupled control for a multicapsule stratospheric airship and transforms the path-tracking and heading-hold control of airships into guidance tracking with a time-varying weighted sum of longitudinal and lateral velocities by the definition of compound speed.Herein,an improved nonlinear predictive control method is provided to reduce the control energy consumption by the rolling optimization of controller parameters based on finite time intervals,ensuring infinite-time path-tracking tasks.Simultaneously,combined with the proposed cyclic regulation process of safe pressure between internal and external capsules,this study can fully reflect the force-thermal coupled rule of airships under the actions of atmospheric environment and maneuvering force,while evaluating the long-endurance capability of airships under the conditions of safe superheating and overpressure.The effectiveness of the motionpressure coupled controller was verified through numerical simulations,which can overcome the influence of environmental wind and achieve a tracking effect for the desired cruise path and compound speed.The airspeed provided during the cyclic circadian time caused the maximum superheating of the helium controlled within 30C.The helium in the internal and external capsules achieved circadian regulation.The equivalent micropore diameter of the capsule of 5 mm can achieve 55 days of long-endurance flight.The controller satisfies the requirements of cruise-flight application modes for multicapsule stratospheric airships with important engineering value.展开更多
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami...Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.展开更多
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates...By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.展开更多
Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 gro...Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 groups of experimental data from 32 different data sources is established.Considering the effects of fluid viscosity,pipe size,interfacial tension,fluid density,pipe inclination and other factors on multi-phase flow parameters,a new gas-liquid two-phase drift flow relation suitable for the full flow pattern and full dip range is established.The distribution coefficient and gas drift velocity models with a pipe inclination range of-90°–90°are established by means of theoretical analysis and data-driven.Compared with three existing models,the proposed models have the highest prediction accuracy and most stable performance.Using a well killing case with the backpressure method in the field,the applicability of the proposed model under the flow conditions with a pipe inclination range of-90°–80°is verified.The errors of the calculated shut in casing pressure,initial back casing pressure and casing pressure when adjusting the displacement are 2.58%,3.43%,5.35%,respectively.The calculated results of the model are in good agreement with the field backpressure data.展开更多
基金This project is supported by National Natural Science Foundation of China (No.50275102)Provincial Foundation for Abroad Return People of Shanxi (No.101045).
文摘A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.
基金This work was supported by National Natural Science Foundation of China (No.50390063,50390064)the National Basic Research Program of China (973 Program) (No.2003CB716207).
文摘To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amount dispensed in each cycle. Taking account of gas compressibility, an intelligent model-based control strategy is proposed to compensate the deviation of adhesive amount dispensed from the desired one. Both simulations and experiments show that the dispensing consistency is greatly improved by using the model-based control strategy developed in this paper.
文摘Aim: To evaluate the effects of retrospective quality control on pressure-flow data with computer-based urodynamic systems from men with benign prostatic hyperplasia (BPH). Methods: A total of 582 traces of pressure-flow study from 181 men with BPH was included in the study. For each trace, maximum urinary flow rate (Qmax) and detrusor pressure at Qmax (pdet.Qmax) were, respectively, read from manually smoothed and corrected uroflow and detrusor pressure curves from the computer print-outs. Obstruction coefficient, International Continence Society (ICS) and Schaefer nomograms were used to detect urethral resistance and to diagnose obstruction. The results obtained by manual reading were compared with those from computer-based systems. Results: After manual correction, Qmax underwent a consistently significant decrease by 1.2 mL/s on average (P 〈 0.001), and had a change range of 0.5-10.4 mL/s. However, pdet.Qmax underwent inconsistently intra-individual changes after correction. The obstruction coefficient increased significantly, by an average of 0.07 (P 〈 0.05). Using the ICS nomogram, the percentage of obstruction increased from 69.8% to 73.9%, and of the non-obstruction decreased from 8.8% to 5.3% (P 〈 0.05). There were 11% of traces that changed the classifications using the ICS nomogram, and 28.9% that changed the grades for the Schaefer nomogram. Conclusion: Systematically significant differences in parameters from pres- sure-flow study between manual readings and computer recordings were demonstrated. Manual correction resulted in a consistently lower Q a higher urethral resistance, and an aggravating obstruction. Manual readings can correct considerable false diagnoses for obstruction. Retrospective quality control of pressure-flow data with com- puter-based systems is necessary.
基金The work was supported by the National Natural Science Foundation of China(No.51874045)National Natural Science Foundation-Youth Foundation(52104056)+2 种基金Department of Natural Resources of Guangdong Province(GDNRC[2021]56)Postdoctoral innovative talents support program in China(BX2021374)Scientific Research Program of Hubei Provincial Department of Education(T2021004).
文摘A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well.
文摘An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts.
基金supported by National Natural Science Foundation of China(No.11175037)National Natural Science Foundation for Young Scientists of China(No.11305017)Special Fund for Theoretical Physics(No.11247239)
文摘The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths.
基金National Natural Science Foundation of China(No.61971345)the Foundation for Key Laboratories of National Defense Science and Technology of China(No.614220120030810).
文摘The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.
基金supported by the Structures and Materials(S&M)Research Lab of Prince Sultan University.
文摘A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow:with the first one,the control is implemented at the base,with the second at the wall,while the third one may be regarded as a combination of these.When jets are over-expanded,the control is not very effective.However,when a favourable pressure gradient is established in the nozzle,the control becomes effective,leading to an increase in the base pressure.
基金Supported by the Key Projects of the National Natural Science Foundation of China (50834002)
文摘Flow field in multilayer gob area, which formed in small hiden-depth, multi-coal layer groups, close distance, hard coal layer, and hard roof, possesses characteristics such as complex, changeable and unstable. Dynamic balance theory of local flow field in multilayer gob area was built based on the realistic requirement that the serious threat on current mining coal layer by large-scale spontaneous combustion fire on close spontaneous combustion coal layer group of Datong Coal mining area at the 'di-hard' conditions was caused by small coal pit mining. The kernel was in dynamic balance between flow field pressures of working face and local flow field in multilayer gob area was kept by transformation. Corresponding technology and set of devices were developed.
基金supported by the National Natural Science Foundation of China(Nos.62073019,62227810).
文摘The current study focuses on the motion-pressure coupled control for a multicapsule stratospheric airship and transforms the path-tracking and heading-hold control of airships into guidance tracking with a time-varying weighted sum of longitudinal and lateral velocities by the definition of compound speed.Herein,an improved nonlinear predictive control method is provided to reduce the control energy consumption by the rolling optimization of controller parameters based on finite time intervals,ensuring infinite-time path-tracking tasks.Simultaneously,combined with the proposed cyclic regulation process of safe pressure between internal and external capsules,this study can fully reflect the force-thermal coupled rule of airships under the actions of atmospheric environment and maneuvering force,while evaluating the long-endurance capability of airships under the conditions of safe superheating and overpressure.The effectiveness of the motionpressure coupled controller was verified through numerical simulations,which can overcome the influence of environmental wind and achieve a tracking effect for the desired cruise path and compound speed.The airspeed provided during the cyclic circadian time caused the maximum superheating of the helium controlled within 30C.The helium in the internal and external capsules achieved circadian regulation.The equivalent micropore diameter of the capsule of 5 mm can achieve 55 days of long-endurance flight.The controller satisfies the requirements of cruise-flight application modes for multicapsule stratospheric airships with important engineering value.
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金Project supported by National High-Technology Research andDevelopment Program of China (Grant No .2002AA517020)
文摘Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.
基金supported in part by the National Natural Science Foundation of China,Key Project (10532010)the Ministry of Science and Technology of China’s Turbulence Program(2009CB724101)+1 种基金the National Basic Research Program of China(2007CB714600)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(10921202/A0204)
文摘By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
基金Supported by the Project of National Natural Science Foundation of China(51991363,51974350)Young Changjiang Scholars Award Program(Q2016135)Ministry of Education Innovation Team Project(IRT_14R58)。
文摘Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 groups of experimental data from 32 different data sources is established.Considering the effects of fluid viscosity,pipe size,interfacial tension,fluid density,pipe inclination and other factors on multi-phase flow parameters,a new gas-liquid two-phase drift flow relation suitable for the full flow pattern and full dip range is established.The distribution coefficient and gas drift velocity models with a pipe inclination range of-90°–90°are established by means of theoretical analysis and data-driven.Compared with three existing models,the proposed models have the highest prediction accuracy and most stable performance.Using a well killing case with the backpressure method in the field,the applicability of the proposed model under the flow conditions with a pipe inclination range of-90°–80°is verified.The errors of the calculated shut in casing pressure,initial back casing pressure and casing pressure when adjusting the displacement are 2.58%,3.43%,5.35%,respectively.The calculated results of the model are in good agreement with the field backpressure data.