Preparation of Fe^2+ chelate of fish protein hydrolysate (Fe-FPH) obtained from low value fish proteins was introduced and its bioactivity was studied by compound enzymolysis. The optimum conditions for hydrolysate...Preparation of Fe^2+ chelate of fish protein hydrolysate (Fe-FPH) obtained from low value fish proteins was introduced and its bioactivity was studied by compound enzymolysis. The optimum conditions for hydrolysate chelating Fe^2+ are DH (degree of hydrolysis) at 5%, pH 7.0, 20℃ and 15 min chelating time for FM (material not being defatted). Four types of Fe-FPH including CA (deposit after chelating), CB (deposit in 50% of absolute ethanol solution), CC (suspended deposit in 80% of absolute ethanol solution), and CD (bottom deposit in 80% of absolute ethanol solution) were fractionated with absolute ethanol from FM. Structural analysis through infra-red spectrum revealed that Fe^2+ was combined strongly with amino-group and carboxyl-group in each chelate and each Fe^2+ could form two five-member ring structures. All of the four chelates were shown more significant antioxidative activity and can be used as natural hydrophobic and hydrophilic antioxidant. Among all the chelates, the CB possesses the most effective antioxidative activity at 92% as high as that of a-tocopherol. Among all Fe-FPHs, only CD showed the most effective antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis and can be used as natural antibacterial. It provides a more effective way for utilization of low value fish proteins and key information of Fe-FPH as additive in food industry.展开更多
Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-...Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ) induced cognitive dysfunction and is neuroprotective in vivo, but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE), which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL) into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d) intragastrically for 21 consecutive days. Hematoxylin eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.展开更多
Four polyphenols were isolated and purified from a brown alga </span><i><span style="font-family:Verdana;">Eisenia arborea</span></i><span style="font-family:Verdana;&qu...Four polyphenols were isolated and purified from a brown alga </span><i><span style="font-family:Verdana;">Eisenia arborea</span></i><span style="font-family:Verdana;">. These phlorotannin compounds showed strong radical scavenging and some enzyme inhibitory activities. All of the compounds showed strong antioxidative, acetylcholinesterase and butyrylcholinesterase inhibitory, and tyrosinase inhbibitory activities at 100 μg/mL. Dieckol and PFF inhibited butyrylcholinesterase, a new target for the treatment of Alzheimer’s disease, very strongly even at 10 μg/mL</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> more strongly than AChE. These two compounds also effectively inhibited tyrosinase. These results support the potential of developing natural antioxidants and antidementia agents from the brown alga.展开更多
基金Supported by National Natural Science Foundation of China (No.30371123)Science and Technology Department of Zhejiang Province (No. 2007C12013)
文摘Preparation of Fe^2+ chelate of fish protein hydrolysate (Fe-FPH) obtained from low value fish proteins was introduced and its bioactivity was studied by compound enzymolysis. The optimum conditions for hydrolysate chelating Fe^2+ are DH (degree of hydrolysis) at 5%, pH 7.0, 20℃ and 15 min chelating time for FM (material not being defatted). Four types of Fe-FPH including CA (deposit after chelating), CB (deposit in 50% of absolute ethanol solution), CC (suspended deposit in 80% of absolute ethanol solution), and CD (bottom deposit in 80% of absolute ethanol solution) were fractionated with absolute ethanol from FM. Structural analysis through infra-red spectrum revealed that Fe^2+ was combined strongly with amino-group and carboxyl-group in each chelate and each Fe^2+ could form two five-member ring structures. All of the four chelates were shown more significant antioxidative activity and can be used as natural hydrophobic and hydrophilic antioxidant. Among all the chelates, the CB possesses the most effective antioxidative activity at 92% as high as that of a-tocopherol. Among all Fe-FPHs, only CD showed the most effective antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis and can be used as natural antibacterial. It provides a more effective way for utilization of low value fish proteins and key information of Fe-FPH as additive in food industry.
基金supported by the National Natural Science Foundation of China,No.81303248,81603321the Natural Science Foundation of Heilongjiang Province of China,No.H2015028+1 种基金a grant from the Nursing Program for Young Scholars of Heilongjiang Province of China,No.UNPYSCT-2016116the Scientific Research Fund for Doctors of Qiqihar Medical University in China,No.QY2016B-09
文摘Kai Xin San is a Chinese herbal formula composed of Radix Ginseng, Poria, Radix Polygalae and Acorus Tatarinowii Rhizome. It has been used in China for many years for treating amnesia. Kai Xin San ameliorates amyloid-β (Aβ) induced cognitive dysfunction and is neuroprotective in vivo, but its precise mechanism remains unclear. Expression of insulin-degrading enzyme (IDE), which degrades Aβ, is strongly correlated with cognitive function. Here, we injected rats with exogenous Aβ42 (200 μM, 5 μL) into the hippocampus and subsequently administered Kai Xin San (0.54 or 1.08 g/kg/d) intragastrically for 21 consecutive days. Hematoxylin eosin and Nissl staining revealed that Kai Xin San protected neurons against Aβ-induced damage. Furthermore, enzyme linked immunosorbent assay, western blot and polymerase chain reaction results showed that Kai Xin San decreased Aβ42 protein levels and increased expression of IDE protein, but not mRNA, in the hippocampus. Our findings reveal that Kai Xin San facilitates hippocampal Aβ degradation and increases IDE expression, which leads, at least in part, to the alleviation of hippocampal neuron injury in rats.
文摘Four polyphenols were isolated and purified from a brown alga </span><i><span style="font-family:Verdana;">Eisenia arborea</span></i><span style="font-family:Verdana;">. These phlorotannin compounds showed strong radical scavenging and some enzyme inhibitory activities. All of the compounds showed strong antioxidative, acetylcholinesterase and butyrylcholinesterase inhibitory, and tyrosinase inhbibitory activities at 100 μg/mL. Dieckol and PFF inhibited butyrylcholinesterase, a new target for the treatment of Alzheimer’s disease, very strongly even at 10 μg/mL</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> more strongly than AChE. These two compounds also effectively inhibited tyrosinase. These results support the potential of developing natural antioxidants and antidementia agents from the brown alga.