We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-20...We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fraetionalization in the fractional quantum Hall state.展开更多
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300502,2016YFA0300503,2016YFA0300604,2016YF0300300 and 2016YFA0300802the National Natural Science Foundation of China under Grant Nos 11421092,11474330,11574359,11674406,11374346 and 11674375+3 种基金the National Basic Research Program of China(973 Program)under Grant No 2015CB921304the National Thousand-Young-Talents Program of Chinathe Strategic Priority Research Program(B) of the Chinese Academy of Sciences under Grant Nos XDB07020000,XDB07020200 and XDB07020300supported by DOE-BES under Grant No DE-FG02-04ER46148
文摘We report a new kagome quantum spin liquid candidate CuaZn(OH)6FBr, which does not experience any phase transition down to 50inK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (-200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fraetionalization in the fractional quantum Hall state.