The problem of adaptive radar detection in compound-Gaussian clutter without secondary data is considered in this paper.In most practical applications,the number of training data is limited.To overcome the lack of tra...The problem of adaptive radar detection in compound-Gaussian clutter without secondary data is considered in this paper.In most practical applications,the number of training data is limited.To overcome the lack of training data,an autoregressive(AR)-process-based covariance matrix estimator is proposed.Then,with the estimated covariance matrix the one-step generalized likelihood ratio test(GLRT) detector is designed without training data.Finally,detection performance of our proposed detector is assessed.展开更多
基金supported by the Fundamental Research Funds for the Central Universities under Grant No. E022050205
文摘The problem of adaptive radar detection in compound-Gaussian clutter without secondary data is considered in this paper.In most practical applications,the number of training data is limited.To overcome the lack of training data,an autoregressive(AR)-process-based covariance matrix estimator is proposed.Then,with the estimated covariance matrix the one-step generalized likelihood ratio test(GLRT) detector is designed without training data.Finally,detection performance of our proposed detector is assessed.
基金"Shu Guang"project(04SG27)supported by the Shanghai Municipal Education CommissionShanghai Education Development Foundation and the National Natural Science Foundation of China(70271001).