期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Aerodynamic Interaction Effects in Coaxial Compound Helicopters 被引量:1
1
作者 Maosheng Wang Yanyang Wang +1 位作者 Yihua Cao Qiang Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1301-1315,共15页
The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which re... The so-called coaxial compound helicopter features two rigid coaxial rotors,and possesses high-speed capabilities.Nevertheless,the small separation of the coaxial rotors causes severe aerodynamic interactions,which require careful analysis.In the present work,the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions.While a sliding mesh method is used to deal with the rotating coaxial rotors,the Reynolds-Averaged Navier-Stokes(RANS)equations are solved for the flow field.The Caradonna&Tung(CT)rotor and Harrington-2 coaxial rotor are considered to validate the numerical method.The results show that the aerodynamic interaction of the two rigid coaxial rotors significantly influences hover’s induced velocity and pressure distribution.In addition,the average thrust of an isolated coaxial rotor is smaller than that of the corresponding isolated single rotor.Compared with the isolated coaxial rotor,the existence of the fuselage results in an increment in the thrust of the rotors.Furthermore,these interactions between the components of the considered coaxial compound helicopter decay with an increase in the advance ratio. 展开更多
关键词 Coaxial compound helicopter aerodynamic interaction numerical simulation sliding mesh method
下载PDF
Influence of differential longitudinal cyclic pitch on flight dynamics of coaxial compound helicopter 被引量:2
2
作者 Yanqin ZHAO Ye YUAN Renliang CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期207-220,共14页
The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simula... The Differential Longitudinal Cyclic Pitch(DLCP)in coaxial compound helicopter is found to be useful in mitigating low-speed rotor interactions and improving flight performance.The complex mutual interaction is simulated by a revised rotor aerodynamics model,where an improved Blade Element Momentum Theory(BEMT)is proposed.Comparisons with the rotor inflow distributions and aircraft trim results from literature validate the accuracy of the model.Then,the influence of the DLCP on the flight dynamics of the aircraft is analysed.The trim characteristics indicate that a negative DLCP can reduce collective and differential collective inputs in low speed forward flight,and the negative longitudinal gradient is alleviated.Moreover,a moderate DLCP can reduce the rotor and total power consumption by 4.68%and 2.9%,respectively.As DLCP further increases,the increased propeller power and unbalanced thrust allocation offset the improvement.In high-speed flight,DLCP does not improve the performance except for extra lateral and heading stick displacements.In addition,the tip clearance is degraded throughout the speed envelope due to the differential pitching moment and the higher thrust from the lower rotor.Meanwhile,the changed rotor efficiency and induced velocity alter low-speed dynamic stability and controllability.The pitch and roll subsidences are slightly degraded with the DLCP,while the heave subsidence,dutch roll and phugoid modes are improved.Lastly,the on-axis controllability,including collective,differential collective pitch,longitudinal and lateral cyclic pitches,varies with DLCP due to its effect on rotor efficiency and inflow distribution.In conclusion,a reasonable DLCP is recommended to adjust the rotor interaction and improve aircraft performance,and further to alter the flight dynamics and aerodynamics of aircraft. 展开更多
关键词 Blade element momentum theory Coaxial compound helicopter Differential longitudinal cyclic pitch Interaction model Tip clearance
原文传递
Study on the lift and propulsive force shares to improve the flight performance of a compound helicopter 被引量:4
3
作者 Kelong YANG Dong HAN Qipeng SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期365-375,共11页
To investigate the effects of lift and propulsive force shares on flight performance,a compound helicopter model is derived.The model consists of a helicopter model,a wing model and a propeller model.At a low speed of... To investigate the effects of lift and propulsive force shares on flight performance,a compound helicopter model is derived.The model consists of a helicopter model,a wing model and a propeller model.At a low speed of 100 km/h,the Lift-to-Drag ratio(L/D)of the compound helicopter is improved when the wing provides 20.2%of the take-off weight.At high speeds,the L/D can be improved when the propeller provides the total propulsive force.Lowering the main rotor speed increases the wing lift share,however,the maximum L/D increases first and then decreases.The maximum L/D increases with decreasing the blade twist of the main rotor.Decreasing the blade twist from-16°to-8°increases the maximum L/D by 2.3%,and the wing lift share is increased from 65.0%to 74.7%.When the main rotor torque is balanced by the rudder,the maximum L/D is increased by 2.2%without changing the wing lift share.The wing should provide more lift as increasing the take-off weight,which reduces the induced power of the main rotor and increases the L/D.When increasing the take-off weight from 9500 kg to 11000 kg,the maximum L/D is increased by 6.5%,and the wing lift share is increased from 74.7%to 80.2%. 展开更多
关键词 compound helicopter Flight performance Lift share Lift-to-Drag ratio PROPELLER Propulsive force share Wing
原文传递
Research on Trim Control of Compound High Speed Helicopter 被引量:1
4
作者 YU Zhiming KONG Weihong CHEN Renliang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第3期449-458,共10页
An investigation is conducted on optimizing the control allocation for trimmed flight on the compound helicopter.The compound helicopter features a single main rotor,a vectored thrust ducted propeller(VTDP)and lifting... An investigation is conducted on optimizing the control allocation for trimmed flight on the compound helicopter.The compound helicopter features a single main rotor,a vectored thrust ducted propeller(VTDP)and lifting wings.Due to the redundant controls for thrust,elevator deflection,and differential and symmetric flap deflection,there is a wide range of trim solutions in forward flight for compound helicopter.A method is developed to calculate optimal trim solutions.Firstly,aerodynamics models for deferent subsystems of the compound helicopter are conducted,which consider the mutual interaction of each part.Secondly,a flight dynamics model is developed based on which the method of trim optimization is performed.Finally,the method is demonstrated using a compound helicopter UH 60L/VTDP.The trim optimization of flight conditions from hover to 370 km/h is conducted using the optimization method.The controls,fuselage attitudes as well as the allocation of lift and thrust along with the flight speed are obtained. 展开更多
关键词 compound helicopter TRIM CONTROL OPTIMIZATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部