Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li util...Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.展开更多
The cryptomelane-type manganese oxide (OMS-2)-supported Co (x Co/OMS-2;x=5,10,and15 wt.%) catalysts were prepared via a pre-incorporation route.The as-prepared materials were used as catalysts for catalytic oxidation ...The cryptomelane-type manganese oxide (OMS-2)-supported Co (x Co/OMS-2;x=5,10,and15 wt.%) catalysts were prepared via a pre-incorporation route.The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV).Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD),Fourier transform infrared spectroscopic (FT-IR),scanning electron microscopic (SEM),X-ray photoelectron spectroscopy (XPS),and hydrogen temperature-programmed reduction (H_(2)-TPR)techniques.Among all of the catalysts,10Co/OMS-2 performed the best,with the T90%,specific reaction rate at 245℃,and turnover frequency at 245℃ (TOFCo) being 245℃,1.23×10^(-3)moltoluene/(gcat·sec),and 11.58×10^(-3)sec-1for toluene oxidation at a space velocity of 60,000mL/(g·hr),respectively.The excellent catalytic performance of 10Co/OMS-2 were due to more oxygen vacancies,enhanced redox ability and oxygen mobility,and strong synergistic effect between Co species and OMS-2 support.Moreover,in the presence of poisoning gases CO_(2),SO_(2)or NH_(3),the activity of 10Co/OMS-2 decreased for the carbonate,sulfate and ammonia species covered the active sites and oxygen vacancies,respectively.After the activation treatment,the catalytic activity was partly recovered.The good low-temperature reducibility of 10Co/OMS-2 could also facilitate the redox process accompanied by the consecutive electron transfer between the adsorbed O_(2)and the cobalt or manganese ions.In the oxidation process of toluene,the benzoic and aldehydic intermediates werefirst generated,which were further oxidized to the benzoate intermediate that were eventually converted into H_(2)O and CO_(2).展开更多
基金supported by the National Natural Science Foundation of China(31870570)the Science and Technology Plan of Fujian Provincial,China(2020H4026,2022G02020 and 2022H6002)+1 种基金the Science and Technology Plan of Xiamen(3502Z20203005)the Scientific Research Start-up Funding for Special Professor of Minjiang Scholars。
文摘Although lithium(Li)metal delivers the highest theoretical capacity as a battery anode,its high reactivity can generate Li dendrites and"dead"Li during cycling,resulting in poor reversibility and low Li utilization.Inducing uniform Li plating/stripping is the core of solving these problems.Herein,we design a highly lithiophilic carbon film with an outer sheath of the nanoneedle arrays to induce homogeneous Li plating/stripping.The excellent conductivity and 3D framework of the carbon film not only offer fast charge transport across the entire electrode but also mitigate the volume change of Li metal during cycling.The abundant lithiophilic sites ensure stable Li plating/stripping,thereby inhibiting the Li dendritic growth and"dead"Li formation.The resulting composite anode allows for stable Li stripping/plating under 0.5 mA cm^(-2) with a capacity of 0.5 mA h cm^(-2) for 4000 h and 3 mA cm^(-2) with a capacity of3 mA h cm^(-2) for 1000 h.The Ex-SEM analysis reveals that lithiophilic property is different at the bottom,top,or channel in the structu re,which can regulate a bottom-up uniform Li deposition behavior.Full cells paired with LFP show a stable capacity of 155 mA h g^(-1) under a current density of 0.5C.The pouch cell can keep powering light-emitting diode even under 180°bending,suggesting its good flexibility and great practical applications.
基金financially supported by NSAF(No.U1530155)Ministry of Science and Technology(MOST)of China,US–China Collaboration on Cutting-edge Technology Development of Electric Vehicle,the Nation Key Basic Research Program of China(No.2015CB251100)Beijing Key Laboratory of Environmental Science and Engineering(No.20131039031)
基金supported by the National Natural Science Foundation of China (No. U2033204)Engineering Laboratory of Battery Safety and Accident Control of Petroleum and Chemical Industry, China (No. ELBSAC202304)supported by Youth Innovation Promotion Association, Chinese Academy of Sciences (No. Y201768)
基金supported by the National Natural Science Foundation of China (Nos. 21277008 and 20777005)National Key Research and Development Program of China (No. 2017YFC0209905)。
文摘The cryptomelane-type manganese oxide (OMS-2)-supported Co (x Co/OMS-2;x=5,10,and15 wt.%) catalysts were prepared via a pre-incorporation route.The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV).Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD),Fourier transform infrared spectroscopic (FT-IR),scanning electron microscopic (SEM),X-ray photoelectron spectroscopy (XPS),and hydrogen temperature-programmed reduction (H_(2)-TPR)techniques.Among all of the catalysts,10Co/OMS-2 performed the best,with the T90%,specific reaction rate at 245℃,and turnover frequency at 245℃ (TOFCo) being 245℃,1.23×10^(-3)moltoluene/(gcat·sec),and 11.58×10^(-3)sec-1for toluene oxidation at a space velocity of 60,000mL/(g·hr),respectively.The excellent catalytic performance of 10Co/OMS-2 were due to more oxygen vacancies,enhanced redox ability and oxygen mobility,and strong synergistic effect between Co species and OMS-2 support.Moreover,in the presence of poisoning gases CO_(2),SO_(2)or NH_(3),the activity of 10Co/OMS-2 decreased for the carbonate,sulfate and ammonia species covered the active sites and oxygen vacancies,respectively.After the activation treatment,the catalytic activity was partly recovered.The good low-temperature reducibility of 10Co/OMS-2 could also facilitate the redox process accompanied by the consecutive electron transfer between the adsorbed O_(2)and the cobalt or manganese ions.In the oxidation process of toluene,the benzoic and aldehydic intermediates werefirst generated,which were further oxidized to the benzoate intermediate that were eventually converted into H_(2)O and CO_(2).