A quasi-static/dynamic pressure-tension compound loading system was established in this paper for the research of cellular mechanical circumstances. Both radical and circumferential strain of the basement membrane wer...A quasi-static/dynamic pressure-tension compound loading system was established in this paper for the research of cellular mechanical circumstances. Both radical and circumferential strain of the basement membrane were studied and compared in theoretical calculations by using the FEA Software ABAQUS and experimental measurements. The tension of the basement membrane was studied both in ABUQUES results and experimental results, the relation between the height of the concave cavity, the radius of the membrane and the strain of the membrane were studied in details.展开更多
Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which...Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.展开更多
Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum bio...Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems. The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/min. Diethyl ether was chosen as the model VOC. Performance of the RDB was evaluated at organic loading rates of 32,1, 64.2, 128, and 256 g ether/(m^3·h) (16.06 g ether/(m^3·h) ≈ 1.0 kg chemical oxygen demand (COD)/(m^3·d)). The EBCT and organic loading rates were recorded on the basis of the medium volume. Results show that the ether removal efficiency decreased with an increased VOC loading rate. Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m^3·h). However, when the VOC loading rate was increased to 256 g ether/(m^3·h), the average removal efficiency dropped to 43%. Nutrient limitation possibly contributed to the drop in ether removal efficiency. High biomass accumulation rate was also observed in the medium at the two higher ether loading rates, and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.展开更多
With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed ...With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.展开更多
A biological aerated filter (BAF) was evaluated as a fixed-biofilm process to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern T...A biological aerated filter (BAF) was evaluated as a fixed-biofilm process to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan. The components of VOC were identified to be toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, bromodichloromethane and isopropanol (IPA). The full-scale BAF was constructed of two separate reactors in series, respectively, using 10- and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility. Experimental results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD. A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m3 packing·d) was determined for the packed bed, in which the flow pattern approached that of a mixed flow. A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system. Moreover, the emission rate of VOC was calculated using the proposed formula, based on an air-water mass equilibrium relationship, and compared to the simulated results obtained using the Water 9 model. Both estimation approaches of calculation and model simulation revealed that 0.1% IPA (0.0031-0.0037 kg/d) were aerated into a gaseous phase, and 30% to 40% (0.006-0.008 kg/d) of the toluene were aerated.展开更多
The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the mi...The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.展开更多
文摘A quasi-static/dynamic pressure-tension compound loading system was established in this paper for the research of cellular mechanical circumstances. Both radical and circumferential strain of the basement membrane were studied and compared in theoretical calculations by using the FEA Software ABAQUS and experimental measurements. The tension of the basement membrane was studied both in ABUQUES results and experimental results, the relation between the height of the concave cavity, the radius of the membrane and the strain of the membrane were studied in details.
基金This project is supported by National Natural Science Foundation of China (No.50475105).
文摘Based on the pressure regulation circuit adopting electro-hydraulic proportional relief valve to control tension, a new type of electro-hydraulic compound control circuit with throttle control unit is presented, which can obtain optimal dynamic damping ratio through real-time altering pressure-flow gain of the throttle control unit, improve the dynamic characteristic of tension follow-up control for the tension system with high inertia loads. Moreover, the characteristic when the cable linear velocity variation causes change of tension is investigated, and a compound control strategy is proposed. The theoretical analysis and experimental results show that the electro-hydraulic compound control circuit is effective and the characteristic of the compound control strategy is satisfactory.
基金partially supported by the National Natural Science Foundation of China(No.50778066)the Program for New Century Excellent Talents in University from the Ministry of Education of China(No.NCET-05-0701)the University of Cincinnati.
文摘Uneven distribution of volatile organic compounds (VOCs) and biomass, and excess biomass accumulation in some biofilters hinder the application of biofiltration technology. An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems. The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/min. Diethyl ether was chosen as the model VOC. Performance of the RDB was evaluated at organic loading rates of 32,1, 64.2, 128, and 256 g ether/(m^3·h) (16.06 g ether/(m^3·h) ≈ 1.0 kg chemical oxygen demand (COD)/(m^3·d)). The EBCT and organic loading rates were recorded on the basis of the medium volume. Results show that the ether removal efficiency decreased with an increased VOC loading rate. Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m^3·h). However, when the VOC loading rate was increased to 256 g ether/(m^3·h), the average removal efficiency dropped to 43%. Nutrient limitation possibly contributed to the drop in ether removal efficiency. High biomass accumulation rate was also observed in the medium at the two higher ether loading rates, and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.
文摘With the terms of the exact series solution taken as trial functions, the method of point collocation was used to calculate the large deflection of a circular plate. The axisymmetrical bending formulae were developed for the calculation of a circular plate subjected to polynomial distributed loads, a concentrated load at the center, uniform radial forces and moments along the edge or their combinations. The support may be elastic. The buckling load was calculated. Under action of uniformly distributed load, central load or their compound load, solutions were compared with those obtained by other methods. Buckling beyond critical thrust was compared with that calculated by the power series method. The method presented in this paper has advantages of wide convergent range, high precision and short computing time. Moreover, the computing time is nearly independent of the complexity of the loads.
文摘A biological aerated filter (BAF) was evaluated as a fixed-biofilm process to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan. The components of VOC were identified to be toluene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, bromodichloromethane and isopropanol (IPA). The full-scale BAF was constructed of two separate reactors in series, respectively, using 10- and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility. Experimental results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD. A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m3 packing·d) was determined for the packed bed, in which the flow pattern approached that of a mixed flow. A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system. Moreover, the emission rate of VOC was calculated using the proposed formula, based on an air-water mass equilibrium relationship, and compared to the simulated results obtained using the Water 9 model. Both estimation approaches of calculation and model simulation revealed that 0.1% IPA (0.0031-0.0037 kg/d) were aerated into a gaseous phase, and 30% to 40% (0.006-0.008 kg/d) of the toluene were aerated.
基金Projects (50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject (20070420023) supported by the China Postdoctoral Science FoundationProject (2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.