One of the most important properties of M-matrices is element-wise non-negative of its inverse. In this paper, we consider element-wise perturbations of tridiagonal M-matrices and obtain bounds on the perturbations so...One of the most important properties of M-matrices is element-wise non-negative of its inverse. In this paper, we consider element-wise perturbations of tridiagonal M-matrices and obtain bounds on the perturbations so that the non-negative inverse persists. The largest interval is given by which the diagonal entries of the inverse of tridiagonal M-matrices can be perturbed without losing the property of total nonnegativity. A numerical example is given to illustrate our findings.展开更多
In this paper,an SEIR model with nonlinear incidence rates are studied.The basic reproduction number R_0 characterizes the disease transmission dynamics: if R_0≤ 1,the disease-free equilibrium is globally asymptotica...In this paper,an SEIR model with nonlinear incidence rates are studied.The basic reproduction number R_0 characterizes the disease transmission dynamics: if R_0≤ 1,the disease-free equilibrium is globally asymptotically stable and the disease always dies out,if R_0> 1 then there is a unique endemic equilibrium which is globally asymptotically stable and the disease persists.展开更多
文摘One of the most important properties of M-matrices is element-wise non-negative of its inverse. In this paper, we consider element-wise perturbations of tridiagonal M-matrices and obtain bounds on the perturbations so that the non-negative inverse persists. The largest interval is given by which the diagonal entries of the inverse of tridiagonal M-matrices can be perturbed without losing the property of total nonnegativity. A numerical example is given to illustrate our findings.
基金Supported by the National Natural Science Foundation of China(11101323)Supported by the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ1038)Supported by the Xi’an Polytechnic University Innovation Fund for Graduate Students(CX201608)
文摘In this paper,an SEIR model with nonlinear incidence rates are studied.The basic reproduction number R_0 characterizes the disease transmission dynamics: if R_0≤ 1,the disease-free equilibrium is globally asymptotically stable and the disease always dies out,if R_0> 1 then there is a unique endemic equilibrium which is globally asymptotically stable and the disease persists.