A2B2O7 pyrochlore is a kind of important functional materials for different purposes,which has been investigated extensively by crystallographers and material scientists.However,the catalytic chemistry of this type of...A2B2O7 pyrochlore is a kind of important functional materials for different purposes,which has been investigated extensively by crystallographers and material scientists.However,the catalytic chemistry of this type of special compounds has rarely been documented,though a few researchers have tried to synthesize some pyrochlore compounds with different chemical compositions for a variety of green energy production and air pollution control reactions in the history.With the expectation to help catalysis scientists to get better acquaintance with,and gain deeper understanding on this type of compounds as heterogeneous catalysts,the major publications over the past several decades have been screened and reviewed in this paper,based also on our own experience of studying on this type of catalytic materials.The crystalline phase transformations of the compounds with the change of the A and B site cations,the phase change’s influences on the surface and bulk properties,and their subsequent impact on the catalytic performance for different reactions have been summarized.Furthermore,the future work which needs to be performed to perceive in depth this kind of important materials as catalysts has been proposed and suggested.We trust that this short review contains valuable information,which will provide great help for people to get better cognition for A2 B2 O7 pyrochlore compounds,and assist them to develop better catalysts for various reactions.展开更多
Electrochemical oxidation is an effective method to degrade persistent organic pollutants.However,due to the limited catalytic activity of traditional thin film electrodes,the anodic oxidation process is slow and usua...Electrochemical oxidation is an effective method to degrade persistent organic pollutants.However,due to the limited catalytic activity of traditional thin film electrodes,the anodic oxidation process is slow and usually requires high energy consumption.Herein,Ti/SnO_(2)-Sb electrode with regulated surface structure was reported to enhance the performance for electrochemical oxidation of persistent organic pollutants.The electrode deposited with SnO_(2)-Sb nanoneedles(Ti/N-SnO_(2)-Sb)showed higher oxidation activity.Its kinetic constant for perfluorooctanoic acid(PFOA)oxidation was 2.0 h^(-1)and the total organic carbon removal rate was 81.7%(4 h)at a relatively low current density of 6 mA/cm^2.Compared with Ti/SnO_(2)-Sb thin film and nanoparticles,Ti/N-SnO_(2)-Sb significantly improved the electrochemical active area and·OH yield,and simultaneously reduced the electron transfer resistance,which enabled it to oxidize PFOA more rapidly even at a lower potential.This work provides a new strategy for promoting the electrochemical oxidation performance.展开更多
基金Project supported by the National Natural Science Foundation of China(21962009,21567016,21666020)Natural Science Foundation of Jiangxi Province(20181ACB20005,20171BAB213013,20181BAB203017)Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis(20181BCD40004)。
文摘A2B2O7 pyrochlore is a kind of important functional materials for different purposes,which has been investigated extensively by crystallographers and material scientists.However,the catalytic chemistry of this type of special compounds has rarely been documented,though a few researchers have tried to synthesize some pyrochlore compounds with different chemical compositions for a variety of green energy production and air pollution control reactions in the history.With the expectation to help catalysis scientists to get better acquaintance with,and gain deeper understanding on this type of compounds as heterogeneous catalysts,the major publications over the past several decades have been screened and reviewed in this paper,based also on our own experience of studying on this type of catalytic materials.The crystalline phase transformations of the compounds with the change of the A and B site cations,the phase change’s influences on the surface and bulk properties,and their subsequent impact on the catalytic performance for different reactions have been summarized.Furthermore,the future work which needs to be performed to perceive in depth this kind of important materials as catalysts has been proposed and suggested.We trust that this short review contains valuable information,which will provide great help for people to get better cognition for A2 B2 O7 pyrochlore compounds,and assist them to develop better catalysts for various reactions.
基金supported by Liaoning Revitalization Talents Program(No.XLYC2007069)the National Natural Science Foundation of China(Nos.22076019 and 22222601)open project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.HC201705)。
文摘Electrochemical oxidation is an effective method to degrade persistent organic pollutants.However,due to the limited catalytic activity of traditional thin film electrodes,the anodic oxidation process is slow and usually requires high energy consumption.Herein,Ti/SnO_(2)-Sb electrode with regulated surface structure was reported to enhance the performance for electrochemical oxidation of persistent organic pollutants.The electrode deposited with SnO_(2)-Sb nanoneedles(Ti/N-SnO_(2)-Sb)showed higher oxidation activity.Its kinetic constant for perfluorooctanoic acid(PFOA)oxidation was 2.0 h^(-1)and the total organic carbon removal rate was 81.7%(4 h)at a relatively low current density of 6 mA/cm^2.Compared with Ti/SnO_(2)-Sb thin film and nanoparticles,Ti/N-SnO_(2)-Sb significantly improved the electrochemical active area and·OH yield,and simultaneously reduced the electron transfer resistance,which enabled it to oxidize PFOA more rapidly even at a lower potential.This work provides a new strategy for promoting the electrochemical oxidation performance.