期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Free Radical Generation by Selenium Compounds and Their Prooxidant Toxicity 被引量:11
1
作者 JULIAN E. SPALLHOLZ(Food and Nutrition, Texas Technology University,Lubbock, TX 79404, USA) 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1997年第2期260-270,共11页
Selemum (Se) and many of its compounds are among the most toxic of nutrients. Selenium toxicity was first described in range animals in the western United States in the 1930's which consumed' selenium accumula... Selemum (Se) and many of its compounds are among the most toxic of nutrients. Selenium toxicity was first described in range animals in the western United States in the 1930's which consumed' selenium accumulator' plants of the genus Astragalus, Xylorrhiza,Oonopsis, and Stanleya. Selenites and selenates from the soil accumulate in these plants primarily as methylated selenium compounds and plants evolve dimethyldiselenide and dimethyselenide.Dietary selenium, primarily as selenomethionine and selenocysteine for humans fulfill the dietary requirement for selenoenzymes and proteins. In humans and animals excessive dietary selenium may be toxic. In vitro, selenium compounds such as selenite, selenium dioxide and diselenides react with thiols, such as glutathione, producing superoxide and other reactive oxygen species. This catalytic reaction of selenium compounds with thiols likely accounts for selenium toxicity to cells ex vivo and in vivo where the major glutathione producing organ,the liver, is also the major target organ of selenium toxicity.Selenium enzymes and selenoethers that do not readily form a selenide (RSe-) anion and compounds such as Ebselen where selenium is sequestered, are not toxic. Methylation of selenium by both plants and animals serves to detoxify selenium by generating methylselenides. Alternatively, full reduction of Se to elemental selenium (Se0) as done by some bacteria and the formation of heavy metal selenides such as Ag2Se or Hg2Se, results in a non-catalytic nontoxic form of selenium.This catalytic prooxidant attribute of some selenium compounds appears to account for its toxicity when such activity exceeds plant and animal methylation reactions and antioxidant defenses. This prooxidant activity may also account for cellular apoptosis and may provide a useful pharmaceutical application for selenium compounds as antibacterial, antiviral, antifungal and anticancer agents 展开更多
关键词 Free Radical Generation by Selenium compounds and Their Prooxidant toxicity GSH
下载PDF
Structural Characterization and Acute Toxicity Simulation for Nitroaromatic Compounds 被引量:10
2
作者 廖立敏 黄茜 李建凤 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2016年第3期449-456,共8页
The three-dimensional holographic vector of atomic interaction field(3D-Ho VAIF) is used to characterize the molecular structures of 45 nitroaromatic compounds.Two quantitative structure-toxicity relationship(QSAR... The three-dimensional holographic vector of atomic interaction field(3D-Ho VAIF) is used to characterize the molecular structures of 45 nitroaromatic compounds.Two quantitative structure-toxicity relationship(QSAR) models are built up by stepwise regression(SMR),multiple linear regression(MLR) and partial least-squares regression(PLS).The correlation coefficients(R) of the models are 0.960 and 0.961,respectively.Then the models are evaluated by performing the cross-validation with the leave-one-out(LOO) procedure and the correlation coefficients(RCV) are 0.949 and 0.941,respectively.The results show that the descriptors can successfully describe the structures of organic compounds.The stability and predictability of the model are satisfactory. 展开更多
关键词 nitroaromatic compounds structural descriptor toxicity QSAR
下载PDF
The use of yellow phosphorus to destroy toxic organic compounds 被引量:1
3
作者 (Energy and Environment Division, Lawrence Berkeley Laboratory.Univeroity of California. Berkeley, CA 94720) Hu Keyuan Wang YizhongResearch Center for Eco-Environmental Sciences, Chinese Academy of Scienas, Beijing 100085, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1994年第1期1-12,共12页
A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are... A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O_2, in moist air to produce species such as O,O_3, PO, and PO_2, which are capable of reacting with various types of organics. Toxic organic com-pounds are converted to small molecular wight organic acids, aldehydes, and/or alcohols, while yel-low phosphonis is oxidital into phosphoric acid, which may be recovered as a valuable byproduct.This technique has ben demonstrated to be effective for destroying many types of toxic organiccompounds. including PAH, aromatic chlorides, amines, alcohols, and acids, nitro-aromatics,heterocyclic hydrocarbons, PCB, aliphatic chlorides and sulfides, dyes, and pesticides. 展开更多
关键词 toxic organic compounds yellow phosphorus chemicals.
下载PDF
Biochemical strategies for the detection and detoxification of toxic chemicals in the environment
4
作者 Ferdinando Febbraio 《World Journal of Biological Chemistry》 CAS 2017年第1期13-20,共8页
Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the... Addressing the problems related to the widespread presence of an increasing number of chemicals released into the environment by human activities represents one of the most important challenges of this century. In the last few years, to replace the high cost, in terms of time and money, of conventional technologies, the scientific community has directed considerable research towards the development both of new detection systems for the measurement of the contamination levels of chemicals in people's body fluids and tissue, as well as in the environment, and of new remediation strategies for the removal of such chemicals from the environment, as a means of the prevention of human diseases. New emerging biosensors for the analysis of environmental chemicals have been proposed, including VHH antibodies, that combine the antibody performance with the affinity for small molecules, genetically engineered microorganisms, aptamers and new highly stable enzymes. However, the advances in the field of chemicals monitoring are still far from producing a continuous realtime and on-line system for their detection. Better results have been obtained in the development of strategies which use organisms(microorganisms, plants and animals) or metabolic pathway-based approaches(single enzymes or more complex enzymatic solutions) for the fixation, degradation and detoxification of chemicals in the environment. Systems for enzymatic detoxification and degradation of toxic agents in wastewater from chemical and manufacturing industries, such as ligninolytic enzymes for the treatment of wastewater from the textile industry, have been proposed. Considering the high value of these research studies, in terms of the protection of human health and of the ecosystem, science must play a major role in guiding policy changes in this field. 展开更多
关键词 Biosensors BIOMONITORING BIOREMEDIATION Toxic compounds Chemicals pollution Human health Environmental pollutants
下载PDF
Insight into fluorescence properties of 14 selected toxic single-ring aromatic compounds in water:Experimental and DFT study 被引量:2
5
作者 Muhammad Farooq Saleem Khan Jing Wu +5 位作者 Cheng Cheng Mona Akbar Bo Liu Chuanyang Liu Jian Shen Yu Xin 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2020年第3期59-74,共16页
Various single-ring aromatic compounds in water sources are of great concern due to its hazardous impact on the environment and human health.The fluorescence excitation-emission matrix(EEMs)spectrophotometry is a usef... Various single-ring aromatic compounds in water sources are of great concern due to its hazardous impact on the environment and human health.The fluorescence excitation-emission matrix(EEMs)spectrophotometry is a useftil method to identify organic pollutants in water.This study provides a detailed insight into the fluorescence properties of the 14 selected toxic single-ring aromatic compounds by experimental and theoretical analysis.The theoretical analysis were done with Time-Dependent Density Functional Theory(TD-DFT)and B3LYP/6-31G(d,p)basis set,whereas,Polarizable Continuum Model(PCM)was used to consider water as solvent.The selected compounds displayed their own specific excitation-emission(Ex/Em)wavelengths region,at Ex<280 nm and Em<340 nm,respectively.Whereas the theoretical Ex/Em was observed as.Ex at 240 nm-260 nm and Em at 255 nm-300 nm.Aniline as a strong aromatic base has longer Em(340 nm)than alkyl,carbonyl,and halogens substituted benzenes.The lone pair of electrons at amide substituent serves as a 7r-electron contributor into the aromatic ring,hence increasing the stability and transition energy,which results in longer emission and low quantum yield for the aniline.The fluorescence of halogenated benzenes illustrates an increase in the HOMO-LUMO energy gap and a decrease in quantum yield associated with atomic size(F>Cl>Br>I).In this study the theoretical results are in line with experimental ones.The understanding of fluorescence and photophysical properties are of great importance in the identification of these compounds in the water. 展开更多
关键词 FLUORESCENCE Photophysical properties Effect of the substituent Toxic aromatic compounds
原文传递
Changing Gly311 to an acidic amino acid in the MATE family protein DTX6 enhances Arabidopsis resistance to the dihydropyridine herbicides 被引量:2
6
作者 Zeyu Lv Mingming Zhao +9 位作者 Wenjing Wang Qi Wang Mengqi Huang Chaoqun Li Qichao Lian Jinqiu Xia Ji Qi Chengbin Xiang Huiru Tang Xiaochun Ge 《Molecular Plant》 SCIE CAS CSCD 2021年第12期2115-2125,共11页
In modern agriculture,frequent application of herbicides may induce the evolution of resistance in plants,but the mechanisms underlying herbicide resistance remain largely unexplored.Here,we report the char-acterizati... In modern agriculture,frequent application of herbicides may induce the evolution of resistance in plants,but the mechanisms underlying herbicide resistance remain largely unexplored.Here,we report the char-acterization of rtp 1(resistant to paraquat 1),an Arabidopsis mutant showing strong resistance to the widely used herbicides paraquat and diquat.The rtp1 mutant is semi-dominant and carries a point mutation in the gene encoding the multidrug and toxic compound extrusion family protein DTX6,leading to the change of glycine to glutamic acid at residue 311(G311E).The wild-type DTX6 with glycine 311 conferred weak para-quat and diquat resistance when overexpressed,while mutation of glycine 311 to a negatively charged amino acid(G311E or G311D)markedly increased the paraquat and diquat resistance of plants,whereas mutation to a positively charged amino acid(G311R or G311K)compromised the resistance,suggesting that the charge property of residue 311 of DTX6 is critical for the paraquat and diquat resistance of Arabi-dopsis plants.DTX6 is localized in the endomembrane trafficking system and may undergo the endosomal sorting to localize to the vacuole and plasma membrane.Treatment with the V-ATPase inhibitor ConA reduced the paraquat resistance of the rtp1 mutant.Paraquat release and uptake assays demonstrated that DTX6 is involved in both exocytosis and vacuolar sequestration of paraquat.DTX6 and DTX5 show functional redundancy as the dtx5 dtx6 double mutant but not the dtx6 single mutant plants were more sen-sitive to paraquat and diquat than the wild-type plants.Collectively,our work reveals a potential mecha-nism for the evolution of herbicide resistance in weeds and provides a promising gene for the manipulation of plant herbicide resistance. 展开更多
关键词 PARAQUAT DIQUAT point mutation DTX6 gene function multidrug and toxic compound extrusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部