Planar and curved microlens arrays(MLAs)are the key components of miniaturized microoptical systems.In order to meet the requirements for advanced and multipurpose applications in microoptical field,a simple manufactu...Planar and curved microlens arrays(MLAs)are the key components of miniaturized microoptical systems.In order to meet the requirements for advanced and multipurpose applications in microoptical field,a simple manufacturing method is urgently required for fabricating MLAs with unique properties,such as waterproofness and variable field-of-view(FOV)imaging.Such properties are beneficial for the production of advanced artificial compound eyes for the significant applications in complex microcavity environments with high humidity,for instance,miniature medical endoscopy.However,the simple and effective fabrication of advanced artificial compound eyes still presents significant challenges.In this paper,bioinspired by the natural superhydrophobic surface of lotus leaf,we propose a novel method for the fabrication of waterproof artificial compound eyes.Electrohydrodynamic jet printing was used to fabricate hierarchical MLAs and nanolens arrays(NLAs)on polydimethylsiloxane film.The flexible film of MLAs hybridized with NLAs exhibited excellent superhydrophobic property with a water contact angle of 158°.The MLAs film was deformed using a microfluidics chip to create artificial compound eyes with variable FOV,which ranged from 0°to 160°.展开更多
[Objective] The aim was to develop the compound system of paraffin emulsion and CA based on natural surfactants to improve the properties of anti- mould and anti-blue stain. [Method] The paraffin wax emulsion with dif...[Objective] The aim was to develop the compound system of paraffin emulsion and CA based on natural surfactants to improve the properties of anti- mould and anti-blue stain. [Method] The paraffin wax emulsion with different con- centrations of 0.5%, 1.0% and 2.0% was added into CA (0.3% and 0.5%) to obtain six groups of compound systems. The full-cell process was applied to treat the sapwood of Pinus spp. at size of 50 mm (L)×20 mm (R)×5 mm (T). Anti-mould and anti-blue stain tests were conducted using Botryodiplodia theobromae Pat., Spergi/lus niger V. Tiegh and Trichoderma viride Pers.ex Fr. according to the GB/T18261-200. [Result] Both paraffin wax emulsion and CA-B could prevent wood against mould and blue stain. However, within a certain range, anti-mould and anti-blue stain ef- fects of wood samples treated by the compound systems reduced slightly as the concentration of paraffin wax emulsion increased. [Conclusion] The research provides references for advancing use of wood biomass resources in a more efficient and more environment-friendly way.展开更多
[Objective] An approach of stress relaxation was proposed in present work to investigate the interactions among the waterproof agent,preservative and wood.[Method] Paraffin emulsion waterproof using natural surfactant...[Objective] An approach of stress relaxation was proposed in present work to investigate the interactions among the waterproof agent,preservative and wood.[Method] Paraffin emulsion waterproof using natural surfactants was prepared at different concentrations of 0.5% and 2.0%,which were added into two concentrations(0.3%,0.5%) of copper azole(CA) to obtain compound systems,and one-time fullcell process was applied to treat the sapwood of Pinus spp.with a size of 10 mm(L) ×10 mm(R) ×10 mm(T).[Result] Compressive stress relaxation behaviors at two moisture levels and room temperature were measured and the results were as follows:1) compared with control group,the stress relaxation of compound system treated groups reduced,whether at oven-dried state or air-dried state.2) Under oven-dried condition,CA could weaken the relaxation of treated samples and this effect became greater with increasing concentration of preservative,but an increase in the concentration of paraffin emulsion would slightly promote the relaxation of compound system treated samples.While under air-dried condition,both CA and paraffin wax emulsion lowered the relaxation which was inversely related to the concentrations of both agents.[Conclusion] The results were expected to shed new light on the various macroscopic properties of the compound system treated wood at a microscopic level,and to provide favorable scientific evidences and theoretical supports for the manufacture of waterproofing preservative-treated wood.展开更多
基金The authors wish to acknowledge the funding provided by the National Natural Science Foundation of China(Grant Nos.61727811,61703395,91748212,U1613220,and 61821005)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20180027)+2 种基金the External Cooperation Program of the Chinese Academy of Sciences(Grant No.173321KYSB20170015)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y201943)LiaoNing Revitalization Talents Program(Grant No.XLYC1807006).
文摘Planar and curved microlens arrays(MLAs)are the key components of miniaturized microoptical systems.In order to meet the requirements for advanced and multipurpose applications in microoptical field,a simple manufacturing method is urgently required for fabricating MLAs with unique properties,such as waterproofness and variable field-of-view(FOV)imaging.Such properties are beneficial for the production of advanced artificial compound eyes for the significant applications in complex microcavity environments with high humidity,for instance,miniature medical endoscopy.However,the simple and effective fabrication of advanced artificial compound eyes still presents significant challenges.In this paper,bioinspired by the natural superhydrophobic surface of lotus leaf,we propose a novel method for the fabrication of waterproof artificial compound eyes.Electrohydrodynamic jet printing was used to fabricate hierarchical MLAs and nanolens arrays(NLAs)on polydimethylsiloxane film.The flexible film of MLAs hybridized with NLAs exhibited excellent superhydrophobic property with a water contact angle of 158°.The MLAs film was deformed using a microfluidics chip to create artificial compound eyes with variable FOV,which ranged from 0°to 160°.
基金Supported by Beijing Municipal Student Research Training Program in Beijing Forestry University(S201410022055)Fundamental Research Funds for the Central Universities in China(No.TD2011-14)~~
文摘[Objective] The aim was to develop the compound system of paraffin emulsion and CA based on natural surfactants to improve the properties of anti- mould and anti-blue stain. [Method] The paraffin wax emulsion with different con- centrations of 0.5%, 1.0% and 2.0% was added into CA (0.3% and 0.5%) to obtain six groups of compound systems. The full-cell process was applied to treat the sapwood of Pinus spp. at size of 50 mm (L)×20 mm (R)×5 mm (T). Anti-mould and anti-blue stain tests were conducted using Botryodiplodia theobromae Pat., Spergi/lus niger V. Tiegh and Trichoderma viride Pers.ex Fr. according to the GB/T18261-200. [Result] Both paraffin wax emulsion and CA-B could prevent wood against mould and blue stain. However, within a certain range, anti-mould and anti-blue stain ef- fects of wood samples treated by the compound systems reduced slightly as the concentration of paraffin wax emulsion increased. [Conclusion] The research provides references for advancing use of wood biomass resources in a more efficient and more environment-friendly way.
文摘[Objective] An approach of stress relaxation was proposed in present work to investigate the interactions among the waterproof agent,preservative and wood.[Method] Paraffin emulsion waterproof using natural surfactants was prepared at different concentrations of 0.5% and 2.0%,which were added into two concentrations(0.3%,0.5%) of copper azole(CA) to obtain compound systems,and one-time fullcell process was applied to treat the sapwood of Pinus spp.with a size of 10 mm(L) ×10 mm(R) ×10 mm(T).[Result] Compressive stress relaxation behaviors at two moisture levels and room temperature were measured and the results were as follows:1) compared with control group,the stress relaxation of compound system treated groups reduced,whether at oven-dried state or air-dried state.2) Under oven-dried condition,CA could weaken the relaxation of treated samples and this effect became greater with increasing concentration of preservative,but an increase in the concentration of paraffin emulsion would slightly promote the relaxation of compound system treated samples.While under air-dried condition,both CA and paraffin wax emulsion lowered the relaxation which was inversely related to the concentrations of both agents.[Conclusion] The results were expected to shed new light on the various macroscopic properties of the compound system treated wood at a microscopic level,and to provide favorable scientific evidences and theoretical supports for the manufacture of waterproofing preservative-treated wood.