An analytical method using gas chromatography isotope ratio mass spectrometry(GC-IRMS)combined with solid phase micro-extraction(SPME)was developed to measure the 613C values of six typical volatiles commonly occurrin...An analytical method using gas chromatography isotope ratio mass spectrometry(GC-IRMS)combined with solid phase micro-extraction(SPME)was developed to measure the 613C values of six typical volatiles commonly occurring in wine(isoamyl acetate,2-octanone,limonene,2-phenylethanol,ethyl octanoate and ethyl decanoate)for the first time.SPME selected with a divinylbenzene/carboxen/polydimethylsiloxane fiber was combined with the GC-IRMS for pretreatment optimization.The optimized SPME parameters of extraction time,extraction temperature and salt concentration were 40 min,40℃ and 10%,respectively.The 613C values measured by SPME-GC-IRMS were in good agreement with those measured via elemental analyzer(EA)-IRMS and GC-IRMS.The differences range from 0.02‰to 0.44‰ with EA-IRMS and from 0 to 0.28‰ with GC-IRMS,indicating the high accuracy of the method.This newly established method measured the precision within 0.30‰ and was successfully validated to discriminate imported real wine samples with identical label but amazing price differences from different importers.展开更多
Reconstruction of ancient atmospheric conditions through the analysis of precipitation patterns is a novel endeavor in the study of paleoclimate. A new approach is now available for a quantitative reconstruction of Pa...Reconstruction of ancient atmospheric conditions through the analysis of precipitation patterns is a novel endeavor in the study of paleoclimate. A new approach is now available for a quantitative reconstruction of Paleogene atmospheric hydrological conditions in High Arctic. It is based on 1) the discovery of exceptionally-preserved Paleogene plant fossils from the Canadian Arctic which yielded in situ labile biomolecules 2) the development of compound-specific hydrogen isotope analysis which can be applied to small amount of plant material and 3) taxon-specific apparent hydrogen isotope fractionation factors obtained from empirical measurement. A new moisture recycling model is established to explain the reconstructed paleohydrologic pattern in the High Arctic during Paleogene.展开更多
基金supported by the fund of the Beijing Laboratory for Food Quality and Safety,Beijing Technology and Business University,China(No.FQS-201810)Science and Technology Commission of Shanghai Municipality,China(No.19DZ2284200).
文摘An analytical method using gas chromatography isotope ratio mass spectrometry(GC-IRMS)combined with solid phase micro-extraction(SPME)was developed to measure the 613C values of six typical volatiles commonly occurring in wine(isoamyl acetate,2-octanone,limonene,2-phenylethanol,ethyl octanoate and ethyl decanoate)for the first time.SPME selected with a divinylbenzene/carboxen/polydimethylsiloxane fiber was combined with the GC-IRMS for pretreatment optimization.The optimized SPME parameters of extraction time,extraction temperature and salt concentration were 40 min,40℃ and 10%,respectively.The 613C values measured by SPME-GC-IRMS were in good agreement with those measured via elemental analyzer(EA)-IRMS and GC-IRMS.The differences range from 0.02‰to 0.44‰ with EA-IRMS and from 0 to 0.28‰ with GC-IRMS,indicating the high accuracy of the method.This newly established method measured the precision within 0.30‰ and was successfully validated to discriminate imported real wine samples with identical label but amazing price differences from different importers.
基金funded in part by the CAS/SAFEA International Partnership Program for Creatine Research Teams,the Pilot Project of Knowledge Innovation,CAS the Major Basis Research Projects(2006CB806400)+1 种基金the National Science Foundation of China(40402002)the American Chemical Society Petroleum Research Funds,and a NASA RI Space Grant
文摘Reconstruction of ancient atmospheric conditions through the analysis of precipitation patterns is a novel endeavor in the study of paleoclimate. A new approach is now available for a quantitative reconstruction of Paleogene atmospheric hydrological conditions in High Arctic. It is based on 1) the discovery of exceptionally-preserved Paleogene plant fossils from the Canadian Arctic which yielded in situ labile biomolecules 2) the development of compound-specific hydrogen isotope analysis which can be applied to small amount of plant material and 3) taxon-specific apparent hydrogen isotope fractionation factors obtained from empirical measurement. A new moisture recycling model is established to explain the reconstructed paleohydrologic pattern in the High Arctic during Paleogene.