As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve t...As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.展开更多
Heat is the largest energy end-use in the world,accounting for about 50%of global final energy consumption.In 2019,the International Energy Agency pointed out that the development of renewable energy heating has becom...Heat is the largest energy end-use in the world,accounting for about 50%of global final energy consumption.In 2019,the International Energy Agency pointed out that the development of renewable energy heating has become a key way for the global response to climate change,environmental pollution control,energy transformation and sustainable development.Biomass energy as a priority for the development of renewable heat sources has been valued by countries around the world.Developed earlier in the EU countries,their biomass heating technology is more mature,and their policy system is more comprehensive.Accounting for 86%of the total renewable thermal energy consumption,biothermal energy in these countries has achieved significant effect and become an important driving force for the decarbonization of the heating industry.This practice has a very high demonstration effect globally.This paper constructs a comprehensive zoning theoretical framework of biomass energy heating and utilization in the EU countries.Based on the calculation of the supply and demand potential of biomass energy heating system,the FCM method is used to quantify the status of biomass resource utilization in 28 EU countries.The results show that there are significant differences in the utilization of biomass energy heating in the EU countries,which can be divided into five categories of comprehensive zones,which are the key development category(Finland,Sweden,Denmark,Estonia,Lithuania and Latvia),resource priority category(Austria,Croatia,Bulgaria,Romania,and Slovenia),policy-oriented category(Germany,Italy,Portugal,and Cyprus),good-potential category(Czech Republic,Hungary,Greece,Spain,Poland,France,and Slovakia)and under-developed category(UK,Netherlands,Belgium,Ireland,Luxembourg and Malta).At the same time,this paper discusses the characteristics and causes of biomass heating utilization of different types of EU countries,and summarizes the mature heating systems and rich experience in the EU countries with China’s current heating situation and its future challenges concerning renewable energy development.Finally,this study provides some implications for China’s clean heating development,energy efficient use,energy supply security and energy structure upgrade.展开更多
园区综合能源系统(Park-level Integrated Energy System,PIES)供能设备多样,能源耦合机制复杂,是典型的复杂能源系统。为实现PIES低碳经济运行并提升风电消纳量以及解决系统因用能结构不合理导致的能源利用效率偏低问题,文中建立了电...园区综合能源系统(Park-level Integrated Energy System,PIES)供能设备多样,能源耦合机制复杂,是典型的复杂能源系统。为实现PIES低碳经济运行并提升风电消纳量以及解决系统因用能结构不合理导致的能源利用效率偏低问题,文中建立了电热需求响应模型优化负荷,并充分考量能量的“质”与“量”,基于热力学第一、第二定律建立了对系统碳排放约束性较强的综合能效模型,并将系统的热负荷根据能源品位进行细化区分,依据热能梯级利用理论,建立了能量耦合设备的数学模型。最后结合系统经济成本目标及系统综合能效目标建立了园区综合能源系统多目标优化调度模型,实现针对系统内各设备出力的调度。算例分析表明,文中提出的优化调度方案能够在提升系统风电消纳率及运行经济性的同时兼顾系统的低碳高效运行。展开更多
针对战役仓库综合管理能力需求分析问题,提出基于灰关联分析的质量功能展开(grey quality function deployment,GQFD)方法。依照战役仓库“任务-能力”分析需求思路建立战役仓库综合管理能力需求分析模型,在战役仓库综合管理能力需求分...针对战役仓库综合管理能力需求分析问题,提出基于灰关联分析的质量功能展开(grey quality function deployment,GQFD)方法。依照战役仓库“任务-能力”分析需求思路建立战役仓库综合管理能力需求分析模型,在战役仓库综合管理能力需求分析模型的基础上,建立灰关联分析的战役仓库综合管理能力质量屋模型,最终计算得到了以仓库业务自动化处理能力为最重要需求的战役仓库综合管理能力需求重要度排序,并通过实例分析验证了该法的可行性和有效性,为下一步战役仓库的规划和发展提供了重要依据。展开更多
电转气(power to gas,P2G)技术是提升综合能源系统灵活性与能源利用率的有效途径。为进一步发掘P2G对综合能源系统的可调节能力与碳减排影响,文章提出一种考虑需求响应和P2G参与碳交易市场的优化调度模型。根据系统负荷特性建立了电热...电转气(power to gas,P2G)技术是提升综合能源系统灵活性与能源利用率的有效途径。为进一步发掘P2G对综合能源系统的可调节能力与碳减排影响,文章提出一种考虑需求响应和P2G参与碳交易市场的优化调度模型。根据系统负荷特性建立了电热综合需求响应模型;结合碳交易机制背景,考虑P2G对碳交易机制的激励作用,建立系统综合碳交易成本模型;以运行成本最小和弃风量最小为目标函数,建立了综合能源系统低碳调度模型,并通过三种场景对比验证所提模型的有效性。通过对需求响应调节能力、机组出力情况、碳价以及弃风惩罚系数分析发现,需求响应有效提高了系统经济型与用能灵活性;考虑综合碳交易成本模型下,合理制定碳价及弃风惩罚系数能有效促进系统低碳经济运行。展开更多
基金supported by the National Natural Science Foundation of China (NSFC) (Grant No.52107107).
文摘As new power systems and dual carbon policies develop,virtual power plant cluster(VPPC)provides another reliable way to promote the efficient utilization of energy and solve environmental pollution problems.To solve the coordinated optimal operation and low-carbon economic operation problem in multi-virtual power plant,a multi-virtual power plant(VPP)electricity-carbon interaction optimal scheduling model considering integrated demand response(IDR)is proposed.Firstly,a multi-VPP electricity-carbon interaction framework is established.The interaction of electric energy and carbon quotas can realize energy complementarity,reduce energy waste and promote low-carbon operation.Secondly,in order to coordinate the multiple types of energy and load in VPPC to further achieve low-carbon operation,the IDR mechanism based on the user comprehensive satisfaction(UCS)of electricity,heat as well as hydrogen is designed,which can effectively maintain the UCS in the cluster within a relatively high range.Finally,the unit output scheme is formulated to minimize the total cost of VPPC and the model is solved using theCPLEX solver.The simulation results showthat the proposed method effectively promotes the coordinated operation among multi-VPP,increases the consumption rate of renewable energy sources and the economics of VPPC and reduces carbon emissions.
文摘Heat is the largest energy end-use in the world,accounting for about 50%of global final energy consumption.In 2019,the International Energy Agency pointed out that the development of renewable energy heating has become a key way for the global response to climate change,environmental pollution control,energy transformation and sustainable development.Biomass energy as a priority for the development of renewable heat sources has been valued by countries around the world.Developed earlier in the EU countries,their biomass heating technology is more mature,and their policy system is more comprehensive.Accounting for 86%of the total renewable thermal energy consumption,biothermal energy in these countries has achieved significant effect and become an important driving force for the decarbonization of the heating industry.This practice has a very high demonstration effect globally.This paper constructs a comprehensive zoning theoretical framework of biomass energy heating and utilization in the EU countries.Based on the calculation of the supply and demand potential of biomass energy heating system,the FCM method is used to quantify the status of biomass resource utilization in 28 EU countries.The results show that there are significant differences in the utilization of biomass energy heating in the EU countries,which can be divided into five categories of comprehensive zones,which are the key development category(Finland,Sweden,Denmark,Estonia,Lithuania and Latvia),resource priority category(Austria,Croatia,Bulgaria,Romania,and Slovenia),policy-oriented category(Germany,Italy,Portugal,and Cyprus),good-potential category(Czech Republic,Hungary,Greece,Spain,Poland,France,and Slovakia)and under-developed category(UK,Netherlands,Belgium,Ireland,Luxembourg and Malta).At the same time,this paper discusses the characteristics and causes of biomass heating utilization of different types of EU countries,and summarizes the mature heating systems and rich experience in the EU countries with China’s current heating situation and its future challenges concerning renewable energy development.Finally,this study provides some implications for China’s clean heating development,energy efficient use,energy supply security and energy structure upgrade.
文摘园区综合能源系统(Park-level Integrated Energy System,PIES)供能设备多样,能源耦合机制复杂,是典型的复杂能源系统。为实现PIES低碳经济运行并提升风电消纳量以及解决系统因用能结构不合理导致的能源利用效率偏低问题,文中建立了电热需求响应模型优化负荷,并充分考量能量的“质”与“量”,基于热力学第一、第二定律建立了对系统碳排放约束性较强的综合能效模型,并将系统的热负荷根据能源品位进行细化区分,依据热能梯级利用理论,建立了能量耦合设备的数学模型。最后结合系统经济成本目标及系统综合能效目标建立了园区综合能源系统多目标优化调度模型,实现针对系统内各设备出力的调度。算例分析表明,文中提出的优化调度方案能够在提升系统风电消纳率及运行经济性的同时兼顾系统的低碳高效运行。
文摘针对战役仓库综合管理能力需求分析问题,提出基于灰关联分析的质量功能展开(grey quality function deployment,GQFD)方法。依照战役仓库“任务-能力”分析需求思路建立战役仓库综合管理能力需求分析模型,在战役仓库综合管理能力需求分析模型的基础上,建立灰关联分析的战役仓库综合管理能力质量屋模型,最终计算得到了以仓库业务自动化处理能力为最重要需求的战役仓库综合管理能力需求重要度排序,并通过实例分析验证了该法的可行性和有效性,为下一步战役仓库的规划和发展提供了重要依据。
文摘电转气(power to gas,P2G)技术是提升综合能源系统灵活性与能源利用率的有效途径。为进一步发掘P2G对综合能源系统的可调节能力与碳减排影响,文章提出一种考虑需求响应和P2G参与碳交易市场的优化调度模型。根据系统负荷特性建立了电热综合需求响应模型;结合碳交易机制背景,考虑P2G对碳交易机制的激励作用,建立系统综合碳交易成本模型;以运行成本最小和弃风量最小为目标函数,建立了综合能源系统低碳调度模型,并通过三种场景对比验证所提模型的有效性。通过对需求响应调节能力、机组出力情况、碳价以及弃风惩罚系数分析发现,需求响应有效提高了系统经济型与用能灵活性;考虑综合碳交易成本模型下,合理制定碳价及弃风惩罚系数能有效促进系统低碳经济运行。