This paper analyzes the differences in geological and development characteristics between continental shale oil in China and marine shale oil in North America, reviews the evaluation methods and technological progress...This paper analyzes the differences in geological and development characteristics between continental shale oil in China and marine shale oil in North America, reviews the evaluation methods and technological progress of the continental shale oil development in China, and points out the existing problems and development directions of the continental shale oil development. The research progress of development evaluation technologies such as favorable lithofacies identification, reservoir characterization, mobility evaluation, fracability evaluation, productivity evaluation and geological-mathematical modeling integration are introduced. The efficient exploration and development of continental shale oil in China are faced with many problems, such as weak basic theoretical research, imperfect exploration and development technology system, big gap in engineering technology between China and other countries, and high development cost. Three key research issues must be studied in the future:(1) forming differentiated development technologies of continental shale oil through geological and engineering integrated research;(2) strengthening the application of big data and artificial intelligence to improve the accuracy of development evaluation;(3) tackling enhanced shale oil recovery technology and research effective development method, so as to improve the development effect and benefit.展开更多
A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity o...A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.展开更多
基金National Science and Technology Major Project(2017ZX05049)。
文摘This paper analyzes the differences in geological and development characteristics between continental shale oil in China and marine shale oil in North America, reviews the evaluation methods and technological progress of the continental shale oil development in China, and points out the existing problems and development directions of the continental shale oil development. The research progress of development evaluation technologies such as favorable lithofacies identification, reservoir characterization, mobility evaluation, fracability evaluation, productivity evaluation and geological-mathematical modeling integration are introduced. The efficient exploration and development of continental shale oil in China are faced with many problems, such as weak basic theoretical research, imperfect exploration and development technology system, big gap in engineering technology between China and other countries, and high development cost. Three key research issues must be studied in the future:(1) forming differentiated development technologies of continental shale oil through geological and engineering integrated research;(2) strengthening the application of big data and artificial intelligence to improve the accuracy of development evaluation;(3) tackling enhanced shale oil recovery technology and research effective development method, so as to improve the development effect and benefit.
基金Supported by the National Natural Science Foundation of China(42102154,41922015,42072147)China Postdoctoral Science Foundation(2021M690168)Postdoctoral Innovation Talent Support Program of Shandong Province(SDBX2021004).
文摘A quantitative evaluation model that integrates kerogen adsorption and clay pore adsorption of shale oil was proposed,and the evaluation charts of adsorption-swelling capacity of kerogen(Mk)and adsorbed oil capacity of clay minerals(Mc)were established,taking the 1st member of Cretaceous Qingshankou Formation in the northern Songliao Basin as an example.The model and charts were derived from swelling oil experiments performed on naturally evolved kerogens and adsorbed oil experiments on clays(separated from shale core samples).They were constructed on the basis of clarifying the control law of kerogen maturity evolution on its adsorption-swelling capacity,and considering the effect of both the clay pore surface area that occupied by adsorbed oil and formation temperature.The results are obtained in four aspects:(1)For the Qing 1 Member shale,with the increase of maturity,Mk decreases.Given Ro of 0.83%–1.65%,Mk is about 50–250 mg/g.(2)The clay in shale adsorbs asphaltene.Mc is 0.63 mg/m^(2),and about 15%of the clay pore surface is occupied by adsorbed oil.(3)In the low to medium maturity stages,the shale oil adsorption is controlled by organic matter.When Ro>1.3%,the shale oil adsorption capacity is contributed by clay pores.(4)The oil adsorption capacity evaluated on the surface at room temperature is 8%–22%(avg.15%)higher than that is held in the formations.The proposed evaluation model reveals the occurrence mechanisms of shale oils with different maturities,and provides a new insight for estimating the reserves of shale oil under formation temperature conditions.