Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity co...Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.展开更多
Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and...Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and city expansion are special subjects. A new formula is used to define the exact degree of dynamic land use. To adequately define land use and landscape pattern changes, the buffer zones, illustrating the changes at different distances from the road, are recognized with ArcGIS 8.1 software. Prominent changes took place in land use and landscape patterns from 1995 to 2000, and the area of built-up land increased by 323.8%. The comprehensive degree of dynamic land use is 2.25, and the degree of dynamic land use of built-up land is the highest, followed by cultivated land. Woodland has the lowest value. The used degree index of land resources declined by 38.8 from 1995 to 2000. Landscape changed dramatically which influenced ecological processes immensely. Different from the corridor effect of other traffic routes, the corridor effect of this section of road is not obvious and its “point” radiation effect can be easily seen. The expanding range of Golmud City is confined to a 3 km buffer, while for Wudaoliang, it is 1 km. No land use change happened in the Nanshankou buffer.展开更多
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05130703)Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-224)2020-Planning Project of Yantai Institute of Coastal Zone Research of Chinese Academy of Sciences(No.Y254021031-6)
文摘Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.
基金The National Key Basic Research Special Fund, No.Gl 998040800 The Core Project of Institute of Geographic Sciences and Natural Resources Research of CAS for Knowledge Innovation, No. CXIOG-E01-01,No.CXIOG-A00-03-02.
文摘Based on digital land use data from 1995 to 2000 and road data, the land use and landscape changes of Golmud, Qumaleb and Zhidoi are studied on a macro-scale. Land use and landscape changes in highway buffer zones and city expansion are special subjects. A new formula is used to define the exact degree of dynamic land use. To adequately define land use and landscape pattern changes, the buffer zones, illustrating the changes at different distances from the road, are recognized with ArcGIS 8.1 software. Prominent changes took place in land use and landscape patterns from 1995 to 2000, and the area of built-up land increased by 323.8%. The comprehensive degree of dynamic land use is 2.25, and the degree of dynamic land use of built-up land is the highest, followed by cultivated land. Woodland has the lowest value. The used degree index of land resources declined by 38.8 from 1995 to 2000. Landscape changed dramatically which influenced ecological processes immensely. Different from the corridor effect of other traffic routes, the corridor effect of this section of road is not obvious and its “point” radiation effect can be easily seen. The expanding range of Golmud City is confined to a 3 km buffer, while for Wudaoliang, it is 1 km. No land use change happened in the Nanshankou buffer.