期刊文献+
共找到1,007篇文章
< 1 2 51 >
每页显示 20 50 100
Particle Swarm Optimization-Based Hyperparameters Tuning of Machine Learning Models for Big COVID-19 Data Analysis
1
作者 Hend S. Salem Mohamed A. Mead Ghada S. El-Taweel 《Journal of Computer and Communications》 2024年第3期160-183,共24页
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne... Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results. 展开更多
关键词 Big COVID-19 Data Machine learning Hyperparameter optimization particle swarm optimization Computational Intelligence
下载PDF
Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
2
作者 Shu-Yi Du Xiang-Guo Zhao +4 位作者 Chi-Yu Xie Jing-Wei Zhu Jiu-Long Wang Jiao-Sheng Yang Hong-Qing Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2951-2966,共16页
Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insuffic... Production optimization is of significance for carbonate reservoirs,directly affecting the sustainability and profitability of reservoir development.Traditional physics-based numerical simulations suffer from insufficient calculation accuracy and excessive time consumption when performing production optimization.We establish an ensemble proxy-model-assisted optimization framework combining the Bayesian random forest(BRF)with the particle swarm optimization algorithm(PSO).The BRF method is implemented to construct a proxy model of the injectioneproduction system that can accurately predict the dynamic parameters of producers based on injection data and production measures.With the help of proxy model,PSO is applied to search the optimal injection pattern integrating Pareto front analysis.After experimental testing,the proxy model not only boasts higher prediction accuracy compared to deep learning,but it also requires 8 times less time for training.In addition,the injection mode adjusted by the PSO algorithm can effectively reduce the gaseoil ratio and increase the oil production by more than 10% for carbonate reservoirs.The proposed proxy-model-assisted optimization protocol brings new perspectives on the multi-objective optimization problems in the petroleum industry,which can provide more options for the project decision-makers to balance the oil production and the gaseoil ratio considering physical and operational constraints. 展开更多
关键词 Production optimization Random forest The Bayesian algorithm Ensemble learning particle swarm optimization
下载PDF
Reconstruction and stability of Fe_(3)O_(4)(001)surface:An investigation based on particle swarm optimization and machine learning
3
作者 柳洪盛 赵圆圆 +2 位作者 邱实 赵纪军 高峻峰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期27-31,共5页
Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface ... Magnetite nanoparticles show promising applications in drug delivery,catalysis,and spintronics.The surface of magnetite plays an important role in these applications.Therefore,it is critical to understand the surface structure of Fe_(3)O_(4)at atomic scale.Here,using a combination of first-principles calculations,particle swarm optimization(PSO)method and machine learning,we investigate the possible reconstruction and stability of Fe_(3)O_(4)(001)surface.The results show that besides the subsurface cation vacancy(SCV)reconstruction,an A layer with Fe vacancy(A-layer-V_(Fe))reconstruction of the(001)surface also shows very low surface energy especially at oxygen poor condition.Molecular dynamics simulation based on the iron–oxygen interaction potential function fitted by machine learning further confirms the thermodynamic stability of the A-layer-V_(Fe)reconstruction.Our results are also instructive for the study of surface reconstruction of other metal oxides. 展开更多
关键词 surface reconstruction magnetite surface particle swarm optimization machine learning
下载PDF
Quantum Particle Swarm Optimization with Deep Learning-Based Arabic Tweets Sentiment Analysis
4
作者 Badriyya BAl-onazi Abdulkhaleq Q.A.Hassan +5 位作者 Mohamed K.Nour Mesfer Al Duhayyim Abdullah Mohamed Amgad Atta Abdelmageed Ishfaq Yaseen Gouse Pasha Mohammed 《Computers, Materials & Continua》 SCIE EI 2023年第5期2575-2591,共17页
Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier u... Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier upon the SA of the tweets were mostly aimed at automating the feature extraction process.In this background,the current study introduces a novel method called Quantum Particle Swarm Optimization with Deep Learning-Based Sentiment Analysis on Arabic Tweets(QPSODL-SAAT).The presented QPSODL-SAAT model determines and classifies the sentiments of the tweets written in Arabic.Initially,the data pre-processing is performed to convert the raw tweets into a useful format.Then,the word2vec model is applied to generate the feature vectors.The Bidirectional Gated Recurrent Unit(BiGRU)classifier is utilized to identify and classify the sentiments.Finally,the QPSO algorithm is exploited for the optimal finetuning of the hyperparameters involved in the BiGRU model.The proposed QPSODL-SAAT model was experimentally validated using the standard datasets.An extensive comparative analysis was conducted,and the proposed model achieved a maximum accuracy of 98.35%.The outcomes confirmed the supremacy of the proposed QPSODL-SAAT model over the rest of the approaches,such as the Surface Features(SF),Generic Embeddings(GE),Arabic Sentiment Embeddings constructed using the Hybrid(ASEH)model and the Bidirectional Encoder Representations from Transformers(BERT)model. 展开更多
关键词 Sentiment analysis Arabic tweets quantum particle swarm optimization deep learning word embedding
下载PDF
BN-GEPSO:Learning Bayesian Network Structure Using Generalized Particle Swarm Optimization
5
作者 Muhammad Saad Salman Ibrahim M.Almanjahie +1 位作者 AmanUllah Yasin Ammara Nawaz Cheema 《Computers, Materials & Continua》 SCIE EI 2023年第5期4217-4229,共13页
At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer fr... At present Bayesian Networks(BN)are being used widely for demonstrating uncertain knowledge in many disciplines,including biology,computer science,risk analysis,service quality analysis,and business.But they suffer from the problem that when the nodes and edges increase,the structure learning difficulty increases and algorithms become inefficient.To solve this problem,heuristic optimization algorithms are used,which tend to find a near-optimal answer rather than an exact one,with particle swarm optimization(PSO)being one of them.PSO is a swarm intelligence-based algorithm having basic inspiration from flocks of birds(how they search for food).PSO is employed widely because it is easier to code,converges quickly,and can be parallelized easily.We use a recently proposed version of PSO called generalized particle swarm optimization(GEPSO)to learn bayesian network structure.We construct an initial directed acyclic graph(DAG)by using the max-min parent’s children(MMPC)algorithm and cross relative average entropy.ThisDAGis used to create a population for theGEPSO optimization procedure.Moreover,we propose a velocity update procedure to increase the efficiency of the algorithmic search process.Results of the experiments show that as the complexity of the dataset increases,our algorithm Bayesian network generalized particle swarm optimization(BN-GEPSO)outperforms the PSO algorithm in terms of the Bayesian information criterion(BIC)score. 展开更多
关键词 Bayesian network structure learning particle swarm optimization
下载PDF
Self-Awakened Particle Swarm Optimization BN Structure Learning Algorithm Based on Search Space Constraint
6
作者 Kun Liu Peiran Li +3 位作者 Yu Zhang Jia Ren Xianyu Wang Uzair Aslam Bhatti 《Computers, Materials & Continua》 SCIE EI 2023年第9期3257-3274,共18页
To obtain the optimal Bayesian network(BN)structure,researchers often use the hybrid learning algorithm that combines the constraint-based(CB)method and the score-and-search(SS)method.This hybrid method has the proble... To obtain the optimal Bayesian network(BN)structure,researchers often use the hybrid learning algorithm that combines the constraint-based(CB)method and the score-and-search(SS)method.This hybrid method has the problemthat the search efficiency could be improved due to the ample search space.The search process quickly falls into the local optimal solution,unable to obtain the global optimal.Based on this,the Particle SwarmOptimization(PSO)algorithm based on the search space constraint process is proposed.In the first stage,the method uses dynamic adjustment factors to constrain the structure search space and enrich the diversity of the initial particles.In the second stage,the update mechanism is redefined,so that each step of the update process is consistent with the current structure which forms a one-to-one correspondence.At the same time,the“self-awakened”mechanism is added to prevent precocious particles frombeing part of the best.After the fitness value of the particle converges prematurely,the activation operation makes the particles jump out of the local optimal values to prevent the algorithmfromconverging too quickly into the local optimum.Finally,the standard network dataset was compared with other algorithms.The experimental results showed that the algorithmcould find the optimal solution at a small number of iterations and a more accurate network structure to verify the algorithm’s effectiveness. 展开更多
关键词 Bayesian network structure learning particle swarm optimization
下载PDF
Weed Classification Using Particle Swarm Optimization and Deep Learning Models
7
作者 M.Manikandakumar P.Karthikeyan 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期913-927,共15页
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a cha... Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets. 展开更多
关键词 Deep learning convolutional neural network weed classification transfer learning particle swarm optimization evolutionary computing Algorithm 1:Metrics Evaluation
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
8
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification
9
作者 Mohammad Shoab Loiy Alsbatin 《Computers, Materials & Continua》 SCIE EI 2024年第10期625-642,共18页
In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method... In recent years,machine learning(ML)and deep learning(DL)have significantly advanced intrusion detection systems,effectively addressing potential malicious attacks across networks.This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things(IoT)environment,leveraging the NSL-KDD dataset.To achieve high accuracy,the authors used the feature extraction technique in combination with an autoencoder,integrated with a gated recurrent unit(GRU).Therefore,the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization(PSO),and PSO has been employed for training the features.The final classification of features has been carried out by using the proposed RF-GNB random forest with the Gaussian Naïve Bayes classifier.The proposed model has been evaluated and its performance is verified with some of the standard metrics such as precision,accuracy rate,recall F1-score,etc.,and has been compared with different existing models.The generated results that detected approximately 99.87%of intrusions within the IoT environments,demonstrated the high performance of the proposed method.These results affirmed the efficacy of the proposed method in increasing the accuracy of intrusion detection within IoT network systems. 展开更多
关键词 Machine learning intrusion detection IOT gated recurrent unit particle swarm optimization random forest Gaussian Naïve Bayes
下载PDF
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization 被引量:3
10
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 Chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(PSO) wake effect wind farm layout optimization(WFLO)
下载PDF
Multi-Topology Hierarchical Collaborative Hybrid Particle Swarm Optimization Algorithm for WSN 被引量:1
11
作者 Yi Wang Kanqi Wang +2 位作者 Maosheng Zhang Hongzhi Zheng Hui Zhang 《China Communications》 SCIE CSCD 2023年第8期254-275,共22页
Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative partic... Wireless sensor networks(WSN)are widely used in many situations,but the disordered and random deployment mode will waste a lot of sensor resources.This paper proposes a multi-topology hierarchical collaborative particle swarm optimization(MHCHPSO)to optimize sensor deployment location and improve the coverage of WSN.MHCHPSO divides the population into three types topology:diversity topology for global exploration,fast convergence topology for local development,and collaboration topology for exploration and development.All topologies are optimized in parallel to overcome the precocious convergence of PSO.This paper compares with various heuristic algorithms at CEC 2013,CEC 2015,and CEC 2017.The experimental results show that MHCHPSO outperforms the comparison algorithms.In addition,MHCHPSO is applied to the WSN localization optimization,and the experimental results confirm the optimization ability of MHCHPSO in practical engineering problems. 展开更多
关键词 particle swarm optimizer levy flight multi-topology hierarchical collaborative framework lamarckian learning intuitive fuzzy entropy wireless sensor network
下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach 被引量:1
12
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(SOH)
下载PDF
Research on Reactive Power Optimization of Offshore Wind Farms Based on Improved Particle Swarm Optimization
13
作者 Zhonghao Qian Hanyi Ma +5 位作者 Jun Rao Jun Hu Lichengzi Yu Caoyi Feng Yunxu Qiu Kemo Ding 《Energy Engineering》 EI 2023年第9期2013-2027,共15页
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p... The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm. 展开更多
关键词 Offshore wind farms improved particle swarm optimization reactive power optimization adaptive weight asynchronous learning factor voltage stability
下载PDF
Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization 被引量:13
14
作者 Zhiming Lv Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第3期838-849,共12页
For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially... For multi-objective optimization problems, particle swarm optimization(PSO) algorithm generally needs a large number of fitness evaluations to obtain the Pareto optimal solutions. However, it will become substantially time-consuming when handling computationally expensive fitness functions. In order to save the computational cost, a surrogate-assisted PSO with Pareto active learning is proposed. In real physical space(the objective functions are computationally expensive), PSO is used as an optimizer, and its optimization results are used to construct the surrogate models. In virtual space, objective functions are replaced by the cheaper surrogate models, PSO is viewed as a sampler to produce the candidate solutions. To enhance the quality of candidate solutions, a hybrid mutation sampling method based on the simulated evolution is proposed, which combines the advantage of fast convergence of PSO and implements mutation to increase diversity. Furthermore, ε-Pareto active learning(ε-PAL)method is employed to pre-select candidate solutions to guide PSO in the real physical space. However, little work has considered the method of determining parameter ε. Therefore, a greedy search method is presented to determine the value ofεwhere the number of active sampling is employed as the evaluation criteria of classification cost. Experimental studies involving application on a number of benchmark test problems and parameter determination for multi-input multi-output least squares support vector machines(MLSSVM) are given, in which the results demonstrate promising performance of the proposed algorithm compared with other representative multi-objective particle swarm optimization(MOPSO) algorithms. 展开更多
关键词 MULTIOBJECTIVE optimization PARETO active learning particle swarm optimization (PSO) surrogate
下载PDF
Learning Bayesian Networks from Data by Particle Swarm Optimization 被引量:2
15
作者 杜涛 张申生 王宗江 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第4期423-429,共7页
Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local op... Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal.The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms. 展开更多
关键词 BAYESIAN networks structure learning particle swarm optimization(PSO)
下载PDF
A Particle Swarm Optimization Based Deep Learning Model for Vehicle Classification 被引量:1
16
作者 Adi Alhudhaif Ammar Saeed +4 位作者 Talha Imran Muhammad Kamran Ahmed S.Alghamdi Ahmed O.Aseeri Shtwai Alsubai 《Computer Systems Science & Engineering》 SCIE EI 2022年第1期223-235,共13页
Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact s... Image classification is a core field in the research area of image proces-sing and computer vision in which vehicle classification is a critical domain.The purpose of vehicle categorization is to formulate a compact system to assist in real-world problems and applications such as security,traffic analysis,and self-driving and autonomous vehicles.The recent revolution in the field of machine learning and artificial intelligence has provided an immense amount of support for image processing related problems and has overtaken the conventional,and handcrafted means of solving image analysis problems.In this paper,a combina-tion of pre-trained CNN GoogleNet and a nature-inspired problem optimization scheme,particle swarm optimization(PSO),was employed for autonomous vehi-cle classification.The model was trained on a vehicle image dataset obtained from Kaggle that has been suitably augmented.The trained model was classified using several classifiers;however,the Cubic SVM(CSVM)classifier was found to out-perform the others in both time consumption and accuracy(94.8%).The results obtained from empirical evaluations and statistical tests reveal that the model itself has shown to outperform the other related models not only in terms of accu-racy(94.8%)but also in terms of training time(82.7 s)and speed prediction(380 obs/sec). 展开更多
关键词 Vehicle classification intelligent transport system deep learning constrained machine learning particle swarm optimization CNN GoogleNet
下载PDF
Comprehensive Rainstorm Intensity Formula Based on Particle Swarm Algorithm
17
作者 赵吉武 邹长武 卢晓宁 《Meteorological and Environmental Research》 CAS 2010年第9期1-3,14,共4页
[Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to o... [Objective] The research aimed to simplify the traditional method and gain the method which could directly construct the comprehensive rainstorm intensity formula.[Method] The particle swarm optimization was used to optimize the parameters of uniform comprehensive rainstorm intensity formula in every return period and directly construct the comprehensive rainstorm intensity formula.Moreover,took the comprehensive rainstorm intensity formula which was established by the hourly precipitation data in wuhu City as an example,the calculation result compared with the computed result of traditional method.[Result] The calculation result precision of particle swarm algorithm was higher than the traditional method,and the calculation process was simpler.[Conclusion] The particle swarm algorithm could directly construct the comprehensive rainstorm intensity formula. 展开更多
关键词 particle swarm algorithm comprehensive rainstorm intensity formula optimization China
下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
18
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
下载PDF
A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design
19
作者 Weizhi Liao Xiaoyun Xia +3 位作者 Xiaojun Jia Shigen Shen Helin Zhuang Xianchao Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第9期3297-3323,共27页
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the... As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems. 展开更多
关键词 Spider monkey optimization opposition-based learning orthogonal experimental design particle swarm
下载PDF
Particle swarm optimization for train schedule of Y-type train routing in urban rail transit 被引量:2
20
作者 WEI Zi-wen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期87-93,共7页
The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of t... The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly. 展开更多
关键词 urban traffic train schedule particle swarm optimization(PSO) classification learning Y-type train routing
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部