Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, g...Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, game theory is introduced to optimize the subjective and objective weights of the index, and the comprehensive weights are obtained by normalization. The results show that the eigenvalues of the grade variables of benefit evaluation decreased from 3.43 to 2.03, indicating that the project of mountain flood disaster prevention and control in Jiangxi province brings into play the benefits year by year, and the eigenvalues tend to decrease steadily after 2012, it is consistent with the changes of various engineering measures and non-engineering measures in the project.展开更多
Objective:To explore the effect of a comprehensive nursing model on patients with Moyamoya disease who underwent intracranial and extracranial revascularization surgery.Methods:110 cases were divided into control and ...Objective:To explore the effect of a comprehensive nursing model on patients with Moyamoya disease who underwent intracranial and extracranial revascularization surgery.Methods:110 cases were divided into control and observation groups with 55 cases each.The control group received routine perioperative care,and the observation group received perioperative care along with comprehensive nursing care.The two groups’disease cognition levels,anxiety,symptoms,daily living ability scores,and postoperative complication rates were compared.Results:The anxiety score and total postoperative complications of the observation group upon discharge were lower than that of the control group,and the disease cognition level and daily living ability upon discharge were higher than that of the control group(P<0.05).Conclusion:Applying the comprehensive nursing model in conjunction with perioperative care for patients undergoing surgery can effectively improve their anxiety,strengthen activities of daily living,and reduce the risk of postoperative complications.展开更多
This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a...This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.展开更多
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev...As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.展开更多
Starting from the utilization and protection of local knowledge, with the performance prism as the framework, the evaluation index system of tourist satisfaction degree was established. The weight was determined by us...Starting from the utilization and protection of local knowledge, with the performance prism as the framework, the evaluation index system of tourist satisfaction degree was established. The weight was determined by using AHP method. Finally, the investigating result was judged with fuzzy comprehensive evaluation method, the evaluation model of tourist satisfaction degree in western tourist area was built, and the case study was carried out. With Lijiang in Yunnan Province as example, according to AHP method, five dimensions weight of the performance prism, various KPI weight and consistency were obtained, fuzzy evaluation on tourist satisfaction degree was conducted. The results showed that the overall was satisfactory, but there were still some problems. Aiming at the utilization and protection of local knowledge, some corresponding countermeasures were put forward which will benefit for further development of tourism in Lijiang of Yunnan Province.展开更多
Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and meth...Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and methods to evaluate CBMR. Based on the geological surveys, laboratory measurements and field works, a four-level analytic hierarchy process (AHP) model for CBMR evaluation is proposed. In this model, different weights are prioritized and assigned on the basis of three main criteria (including reservoir physical property, storage capacity and geological characteristics), 15 sub-criteria, and 18 technical alternatives; the later of which are discussed in detail. The model was applied to evaluate the CBMR of the Permo-Carboniferous coals in the Qinshui Basin, North China. This GIS-based fuzzy AHP comprehensive model can be used for the evaluation of CBMR of medium-high rank (mean maximum vitrinite reflectance 〉0.5 %) coal districts in China.展开更多
The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that th...The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that the value of weight vector has no relativity to its initial value but depends on the data of Quality Standard and actual samples. In the present study, the ARM is enhanced with the technique of data driving, which means some more groups of data from the Quality Standard are selected with the uniform random method to make the calculation of weight values more rational and more scientific. This improved attribute recognition model (IARM) is applied to a real case of assessment on seawater quality. The given example shows that the IARM has the merits of being simple in principle, easy to operate, and capable of producing objective results, and is therefore of use in evaluation problems in marine environment science.展开更多
This study aims at determining the optimal CO2 separation technology for Chinese refineries, based on current available technologies, by the method of comprehensive evaluation. Firstly, according to the characteristic...This study aims at determining the optimal CO2 separation technology for Chinese refineries, based on current available technologies, by the method of comprehensive evaluation. Firstly, according to the characteristics of flue gas from Chinese refineries, three feasible CO2 separation technologies are selected. These are pressure swing adsorption (PSA), chemical absorption (CA), and membrane absorption (MA). Secondly, an economic assessment of these three techniques is carried out in accordance with cash flow analysis. The results show that these three techniques all have economic feasibility and the PSA technique is the best. Finally, to further optimize the three techniques, a two-level fuzzy comprehensive evaluation model is established, including economic, technological, and environmental factors. Considering all the factors, PSA is optimal for Chinese refineries, followed by CA and MA. Therefore, to reduce Chinese refineries carbon emission, it is suggested that CO2 should be captured from off-gases using PSA.展开更多
With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distributi...With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.展开更多
Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact...Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact developing level index of EDA due to its indicator system’s complexity and disequilibrium. In this paper, a framework of indicators was set to evaluate, monitor and examine the comprehensive level of ecological demonstration area (EDA). Fuzzy logic method was used to develop the fuzzy comprehensive evaluation model (FCEM), which could quantitatively reveal the developing degree of EDA. Huiji District of Zhengzhou, Henan Province, one of the 9th group of national EDAs, was taken as a study case. The framework of FCEM for the integrated system included six subsystems, which were social, economic, ecological, rural, urban and accessorial description ones. The research would be valuable in the comprehensive quantitative evaluation of EDA and would work as a guide in the construction practices of Huiji ecological demonstration area.展开更多
Any single Positioning,Navigation and Timing(PNT)technology has its vulnerability and limits,even the powerful Global Navigation Satellite System(GNSS)is no exception.To provide continuous and reliable PNT information...Any single Positioning,Navigation and Timing(PNT)technology has its vulnerability and limits,even the powerful Global Navigation Satellite System(GNSS)is no exception.To provide continuous and reliable PNT information to users,the theory and technique of comprehensive PNT information system and resilient PNT application system have attracted great attention from Chinese scholars.We try to summarize the progress and development of the synthetic PNT system,including the proposal,the modification and the improvement of the comprehensive PNT,as well as the follow-up resilient PNT.The frame of China’s comprehensive PNT system consisted of comprehensive PNT infrastructure and comprehensive PNT application system is initially described;the achievements on some main PNT technologies are introduced;the conceptual models of resilient PNT are given;besides,existing researches on resilient function models and stochastic models are summarized according to different user scenarios.展开更多
Extenics was a branch of mathematics for studying the incompatible problems. In this paper, basing on calculating the associative functions of all various indexes, we have obtained the quantitative assessment results ...Extenics was a branch of mathematics for studying the incompatible problems. In this paper, basing on calculating the associative functions of all various indexes, we have obtained the quantitative assessment results of prediction indexes by introducing this theory into the comprehensive earthquake prediction through establishing the matter-element model for comprehensive prediction, so that the incompatible problems can be solved. The preliminary results demonstrate that this method has better prospects in comprehensive earthquake prediction.展开更多
With the continuous development of science and technology,artificial intelligence(AI)is coming into our lives and changing our lives.Since China entered the aging society in 2000,the degree of population aging has dee...With the continuous development of science and technology,artificial intelligence(AI)is coming into our lives and changing our lives.Since China entered the aging society in 2000,the degree of population aging has deepened.Comprehensive geriatric assessment(CGA)is now the accepted gold standard for the care of older people in hospitals.However,some problems limit the clinical application,such as complexity and time consuming.Therefore,by analyzing previous studies,we summarize some existing AI tools in order to find a more optimized assessment tool to complete the entire CGA process.展开更多
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
With the acceleration of urbanization, city complex as an intensive urban organization form has gradually grown up in China. By consulting relevant documents of city complex, emergence background and related concepts ...With the acceleration of urbanization, city complex as an intensive urban organization form has gradually grown up in China. By consulting relevant documents of city complex, emergence background and related concepts of city complex were introduced, landscape design of Chenglong-International was analyzed to propose landscape design principles and concepts of city complex under the compound development model, landscape processing techniques of outdoor functional subareas and transitional areas were introduced to provide useful reference for the landscape design of city complex.展开更多
The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in...The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.展开更多
A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., id...A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.展开更多
This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint mo...This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint model to investigate the damages caused by typhoons for a coastal province,Fujian Province,China in 2005-2015(latest).First,the PCA is applied to analyze comprehensively the relationship between hazard factors,hazard bearing factors and disaster factors.Then five integrated indices,overall disaster level,typhoon intensity,damaged condition of houses,medical rescue and self-rescue capability,are extracted through the PCA;Finally,the BP neural network model,which takes the principal component scores as input and is optimized by the LM algorithm,is implemented to forecast the comprehensive loss of typhoons.It is estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015,with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the typhoon intensity increases.The model was validated using three typhoon events and it is found that the error is less than 1%.These results provide information for the government to increase medical institutions and medical workers and for the communities to promote residents’self-rescue capability.展开更多
Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its tes...Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.展开更多
Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasona...Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasonably plan and distribute primary schools in low-income mountain cities. The construction principles and advantages of the SNCM method are proposed and the method tested in Wanyuan city of Qinba Mountain area(Southwest China) to verify its feasibility and optimization. Taking account of the mountain terrain and its influence on user behavior, we used the SNCM method to build a comprehensive model which integrates the road slope and the walking speed of pupils into the basic spatial model. The model is used to calculate a reasonable layout of the primary schools and to validate the rationale. The results show that the SNCM method can be effectively applied in low-income mountainous cities. It can not only improve the accessibility and service efficiency of primary schools using as little capital-investment as possible, but also help the city grow in an intensive and efficient way.展开更多
文摘Taking the mountain flood disaster prevention and control project in Jiangxi province as the research object, the evaluation period is 2010-2015, and 29 evaluation indexes are selected from 7 aspects. In this paper, game theory is introduced to optimize the subjective and objective weights of the index, and the comprehensive weights are obtained by normalization. The results show that the eigenvalues of the grade variables of benefit evaluation decreased from 3.43 to 2.03, indicating that the project of mountain flood disaster prevention and control in Jiangxi province brings into play the benefits year by year, and the eigenvalues tend to decrease steadily after 2012, it is consistent with the changes of various engineering measures and non-engineering measures in the project.
文摘Objective:To explore the effect of a comprehensive nursing model on patients with Moyamoya disease who underwent intracranial and extracranial revascularization surgery.Methods:110 cases were divided into control and observation groups with 55 cases each.The control group received routine perioperative care,and the observation group received perioperative care along with comprehensive nursing care.The two groups’disease cognition levels,anxiety,symptoms,daily living ability scores,and postoperative complication rates were compared.Results:The anxiety score and total postoperative complications of the observation group upon discharge were lower than that of the control group,and the disease cognition level and daily living ability upon discharge were higher than that of the control group(P<0.05).Conclusion:Applying the comprehensive nursing model in conjunction with perioperative care for patients undergoing surgery can effectively improve their anxiety,strengthen activities of daily living,and reduce the risk of postoperative complications.
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.
基金Supported by Gansu Province 2023 Education Science and Technology Innovation Project(2023B-431).
文摘As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.
基金Supported by 2008 National Social Science Fund (08BMZ042)~~
文摘Starting from the utilization and protection of local knowledge, with the performance prism as the framework, the evaluation index system of tourist satisfaction degree was established. The weight was determined by using AHP method. Finally, the investigating result was judged with fuzzy comprehensive evaluation method, the evaluation model of tourist satisfaction degree in western tourist area was built, and the case study was carried out. With Lijiang in Yunnan Province as example, according to AHP method, five dimensions weight of the performance prism, various KPI weight and consistency were obtained, fuzzy evaluation on tourist satisfaction degree was conducted. The results showed that the overall was satisfactory, but there were still some problems. Aiming at the utilization and protection of local knowledge, some corresponding countermeasures were put forward which will benefit for further development of tourism in Lijiang of Yunnan Province.
基金funded by the National Basic Research Program of China(Grant Nos.2006CB202202,2002CB211702,2009CB219600)National Natural Science Foundation of China(No.40572091)+1 种基金China Geological Survey(Grant Nos.20021010004,1212010534702)PetroChina Innovation Fundation(No.2008D-5006-01-04)
文摘Coalbed methane reservoir (CBMR) evaluation is important for choosing the prospective target area for coalbed methane exploration and production. This study aims at identifying the characteristic parameters and methods to evaluate CBMR. Based on the geological surveys, laboratory measurements and field works, a four-level analytic hierarchy process (AHP) model for CBMR evaluation is proposed. In this model, different weights are prioritized and assigned on the basis of three main criteria (including reservoir physical property, storage capacity and geological characteristics), 15 sub-criteria, and 18 technical alternatives; the later of which are discussed in detail. The model was applied to evaluate the CBMR of the Permo-Carboniferous coals in the Qinshui Basin, North China. This GIS-based fuzzy AHP comprehensive model can be used for the evaluation of CBMR of medium-high rank (mean maximum vitrinite reflectance 〉0.5 %) coal districts in China.
基金The authors would like to acknowledge the funding support of the National Natural Science Foundation of China (50579009, 70471090) the National 10 th Five Year Scientific Project of China for Tackling the Key Problems (2004BA608B-02 - 02) and the Excellence Youth Teacher Sustentation Fund Program of the Ministry of Education of China (Department of Education and Personnel [2002] 350).
文摘The attribute recognition model (ARM) has been widely used to make comprehensive assessment in many engineering fields, such as environment, ecology, and economy. However, large numbers of experiments indicate that the value of weight vector has no relativity to its initial value but depends on the data of Quality Standard and actual samples. In the present study, the ARM is enhanced with the technique of data driving, which means some more groups of data from the Quality Standard are selected with the uniform random method to make the calculation of weight values more rational and more scientific. This improved attribute recognition model (IARM) is applied to a real case of assessment on seawater quality. The given example shows that the IARM has the merits of being simple in principle, easy to operate, and capable of producing objective results, and is therefore of use in evaluation problems in marine environment science.
基金the China University of Petroleum Foundationthe Research Institute of Safety and Environment TechnologyChina National Petroleum Corporation
文摘This study aims at determining the optimal CO2 separation technology for Chinese refineries, based on current available technologies, by the method of comprehensive evaluation. Firstly, according to the characteristics of flue gas from Chinese refineries, three feasible CO2 separation technologies are selected. These are pressure swing adsorption (PSA), chemical absorption (CA), and membrane absorption (MA). Secondly, an economic assessment of these three techniques is carried out in accordance with cash flow analysis. The results show that these three techniques all have economic feasibility and the PSA technique is the best. Finally, to further optimize the three techniques, a two-level fuzzy comprehensive evaluation model is established, including economic, technological, and environmental factors. Considering all the factors, PSA is optimal for Chinese refineries, followed by CA and MA. Therefore, to reduce Chinese refineries carbon emission, it is suggested that CO2 should be captured from off-gases using PSA.
基金supported by the State Grid Corporation of China(KJ21-1-56).
文摘With the large-scale application of 5G technology in smart distribution networks,the operation effects of distribution networks are not clear.Herein,we propose a comprehensive evaluation model of a 5G+smart distribution network based on the combination weighting and cloud model of the improved Fuzzy Analytic Hierarchy-Entropy Weight Method(FAHP-EWM).First,we establish comprehensive evaluation indexes of a 5G+smart distribution network from five dimensions:reliable operation,economic operation,efficient interaction,technological intelligence,and green emission reduction.Second,by introducing the principle of variance minimization,we propose a combined weighting method based on the improved FAHP-EWM to calculate the comprehensive weight,so as to reduce the defects of subjective arbitrariness and promote objectivity.Finally,a comprehensive evaluation model of 5G+smart distribution network based on cloud model is proposed by considering the uncertainty of distribution network node information and equipment status information.The example analysis indicates that the overall operation of the 5G+smart distribution network project is decent,and the weight value calculated by the combined weighting method is more reasonable and accurate than that calculated by the single weighting method,which verifies the effectiveness and rationality of the proposed evaluation method.Moreover,the proposed evaluation method has a certain guiding role for the large-scale application of 5G communication technology in smart distribution networks.
基金U nder the auspices of the M ajor State B asic R esearch D evelopm ent Program of C hina (973 Program ) (N o.2005C B 724205)
文摘Ecological demonstration area (EDA) is an authorized nomination, which should be assessed from several aspects, including ecological, social, environmental, economic ones and so on. It is difficult to advance an exact developing level index of EDA due to its indicator system’s complexity and disequilibrium. In this paper, a framework of indicators was set to evaluate, monitor and examine the comprehensive level of ecological demonstration area (EDA). Fuzzy logic method was used to develop the fuzzy comprehensive evaluation model (FCEM), which could quantitatively reveal the developing degree of EDA. Huiji District of Zhengzhou, Henan Province, one of the 9th group of national EDAs, was taken as a study case. The framework of FCEM for the integrated system included six subsystems, which were social, economic, ecological, rural, urban and accessorial description ones. The research would be valuable in the comprehensive quantitative evaluation of EDA and would work as a guide in the construction practices of Huiji ecological demonstration area.
基金Key Program of National Natural Science Foundation of China(No.41931076)Laoshan Laboratory(No.LSKJ202205101)+1 种基金National Key R&D Program of China(No.2020YFB0505800)National Natural Science Foundation of China for Young Scholar(No.41904042)。
文摘Any single Positioning,Navigation and Timing(PNT)technology has its vulnerability and limits,even the powerful Global Navigation Satellite System(GNSS)is no exception.To provide continuous and reliable PNT information to users,the theory and technique of comprehensive PNT information system and resilient PNT application system have attracted great attention from Chinese scholars.We try to summarize the progress and development of the synthetic PNT system,including the proposal,the modification and the improvement of the comprehensive PNT,as well as the follow-up resilient PNT.The frame of China’s comprehensive PNT system consisted of comprehensive PNT infrastructure and comprehensive PNT application system is initially described;the achievements on some main PNT technologies are introduced;the conceptual models of resilient PNT are given;besides,existing researches on resilient function models and stochastic models are summarized according to different user scenarios.
文摘Extenics was a branch of mathematics for studying the incompatible problems. In this paper, basing on calculating the associative functions of all various indexes, we have obtained the quantitative assessment results of prediction indexes by introducing this theory into the comprehensive earthquake prediction through establishing the matter-element model for comprehensive prediction, so that the incompatible problems can be solved. The preliminary results demonstrate that this method has better prospects in comprehensive earthquake prediction.
基金supported by the Foundation of Aerospace Center Hospital(No.YN202107)the Foundation of Aerospace Medical Health Technology Group(No.2021YK02)。
文摘With the continuous development of science and technology,artificial intelligence(AI)is coming into our lives and changing our lives.Since China entered the aging society in 2000,the degree of population aging has deepened.Comprehensive geriatric assessment(CGA)is now the accepted gold standard for the care of older people in hospitals.However,some problems limit the clinical application,such as complexity and time consuming.Therefore,by analyzing previous studies,we summarize some existing AI tools in order to find a more optimized assessment tool to complete the entire CGA process.
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
文摘With the acceleration of urbanization, city complex as an intensive urban organization form has gradually grown up in China. By consulting relevant documents of city complex, emergence background and related concepts of city complex were introduced, landscape design of Chenglong-International was analyzed to propose landscape design principles and concepts of city complex under the compound development model, landscape processing techniques of outdoor functional subareas and transitional areas were introduced to provide useful reference for the landscape design of city complex.
基金financially supported by the National Natural Science Fund, China (Grant Nos. 31200376, 41201586)the CAS Visiting Professor-Ship for Senior International Scientists (Grant No. 2013T2Z0011)
文摘The Hani Rice Terraces System, based on gravity-flow irrigation, is one of the Globally Important Agricultural Heritage Systems(GIAHS) pilot sites selected by FAO in 2010. The water resource plays an important role in the sustainable development of this system. The value of water conserved by the forest is influenced by natural, economic and social factors. In this paper, the water quality, per capita water resources, per capita GDP and population density are chosen as indices to construct an index system for a comprehensive evaluation of water resources value. The weights of these indices are 0.443, 0.31, 0.141 and 0.106 respectively, which are determined by the analytic hierarchy process(AHP) method. The water resources value has been assessed by the fuzzy comprehensive evaluation model. The results show that the water resources value in the Hani Rice Terraces System is 4.25 RMB/m^3. Evaluating the value of water resources in the Hani Rice Terraces System can provide a reference for ecological compensation, for raising public awareness of the importance of protecting the system, and ultimately achieving its sustainable development.
基金Supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.
文摘This paper develops a joint model utilizing the principal component analysis(PCA)and the back propagation(BP)neural network model optimized by the Levenberg Marquardt(LM)algorithm,and as an application of the joint model to investigate the damages caused by typhoons for a coastal province,Fujian Province,China in 2005-2015(latest).First,the PCA is applied to analyze comprehensively the relationship between hazard factors,hazard bearing factors and disaster factors.Then five integrated indices,overall disaster level,typhoon intensity,damaged condition of houses,medical rescue and self-rescue capability,are extracted through the PCA;Finally,the BP neural network model,which takes the principal component scores as input and is optimized by the LM algorithm,is implemented to forecast the comprehensive loss of typhoons.It is estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015,with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the typhoon intensity increases.The model was validated using three typhoon events and it is found that the error is less than 1%.These results provide information for the government to increase medical institutions and medical workers and for the communities to promote residents’self-rescue capability.
基金Project(2014E00468R)supported by Technological Innovation Fund of Aviation Industry Corporation of China
文摘Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.
基金funded by the National Social Science Foundation of Chongqing (Grants No. 2016YBJJ031)
文摘Focusing on the peculiarities of urban construction resulting from specific mountain terrains, the purpose of this study is to find out a suitable method based on a Spatial Network Comprehensive Model(SNCM) to reasonably plan and distribute primary schools in low-income mountain cities. The construction principles and advantages of the SNCM method are proposed and the method tested in Wanyuan city of Qinba Mountain area(Southwest China) to verify its feasibility and optimization. Taking account of the mountain terrain and its influence on user behavior, we used the SNCM method to build a comprehensive model which integrates the road slope and the walking speed of pupils into the basic spatial model. The model is used to calculate a reasonable layout of the primary schools and to validate the rationale. The results show that the SNCM method can be effectively applied in low-income mountainous cities. It can not only improve the accessibility and service efficiency of primary schools using as little capital-investment as possible, but also help the city grow in an intensive and efficient way.